Upload inference.py with huggingface_hub
Browse files- inference.py +131 -0
inference.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import onnx
|
3 |
+
import onnxruntime as ort
|
4 |
+
import cv2
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Download the model from the Hugging Face Hub
|
9 |
+
model = hf_hub_download(
|
10 |
+
repo_id="wybxc/DocLayout-YOLO-DocStructBench-onnx",
|
11 |
+
filename="doclayout_yolo_docstructbench_imgsz1024.onnx",
|
12 |
+
)
|
13 |
+
model = onnx.load(model)
|
14 |
+
metadata = {prop.key: prop.value for prop in model.metadata_props}
|
15 |
+
|
16 |
+
names = ast.literal_eval(metadata["names"])
|
17 |
+
stride = ast.literal_eval(metadata["stride"])
|
18 |
+
|
19 |
+
# Load the model with ONNX Runtime
|
20 |
+
session = ort.InferenceSession(model.SerializeToString())
|
21 |
+
|
22 |
+
|
23 |
+
def resize_and_pad_image(image, new_shape, stride=32):
|
24 |
+
"""
|
25 |
+
Resize and pad the image to the specified size, ensuring dimensions are multiples of stride.
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
- image: Input image
|
29 |
+
- new_shape: Target size (integer or (height, width) tuple)
|
30 |
+
- stride: Padding alignment stride, default 32
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
- Processed image
|
34 |
+
"""
|
35 |
+
if isinstance(new_shape, int):
|
36 |
+
new_shape = (new_shape, new_shape)
|
37 |
+
|
38 |
+
h, w = image.shape[:2]
|
39 |
+
new_h, new_w = new_shape
|
40 |
+
|
41 |
+
# Calculate scaling ratio
|
42 |
+
r = min(new_h / h, new_w / w)
|
43 |
+
resized_h, resized_w = int(round(h * r)), int(round(w * r))
|
44 |
+
|
45 |
+
# Resize image
|
46 |
+
image = cv2.resize(image, (resized_w, resized_h), interpolation=cv2.INTER_LINEAR)
|
47 |
+
|
48 |
+
# Calculate padding size and align to stride multiple
|
49 |
+
pad_w = (new_w - resized_w) % stride
|
50 |
+
pad_h = (new_h - resized_h) % stride
|
51 |
+
top, bottom = pad_h // 2, pad_h - pad_h // 2
|
52 |
+
left, right = pad_w // 2, pad_w - pad_w // 2
|
53 |
+
|
54 |
+
# Add padding
|
55 |
+
image = cv2.copyMakeBorder(
|
56 |
+
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
|
57 |
+
)
|
58 |
+
|
59 |
+
return image
|
60 |
+
|
61 |
+
|
62 |
+
class YoloResult:
|
63 |
+
def __init__(self, boxes, names):
|
64 |
+
self.boxes = [YoloBox(data=d) for d in boxes]
|
65 |
+
self.names = names
|
66 |
+
|
67 |
+
|
68 |
+
class YoloBox:
|
69 |
+
def __init__(self, data):
|
70 |
+
self.xyxy = data[:4]
|
71 |
+
self.conf = data[-2]
|
72 |
+
self.cls = data[-1]
|
73 |
+
|
74 |
+
|
75 |
+
def inference(image):
|
76 |
+
"""
|
77 |
+
Run inference on the input image.
|
78 |
+
|
79 |
+
Parameters:
|
80 |
+
- image: Input image, HWC format and RGB order
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
- YoloResult object containing the predicted boxes and class names
|
84 |
+
"""
|
85 |
+
|
86 |
+
# Preprocess image
|
87 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
88 |
+
pix = resize_and_pad_image(image, new_shape=int(image.shape[0] / stride) * stride)
|
89 |
+
pix = np.transpose(pix, (2, 0, 1)) # CHW
|
90 |
+
pix = np.expand_dims(pix, axis=0) # BCHW
|
91 |
+
pix = pix.astype(np.float32) / 255.0 # Normalize to [0, 1]
|
92 |
+
|
93 |
+
# Run inference
|
94 |
+
preds = session.run(None, {"images": pix})[0]
|
95 |
+
|
96 |
+
# Postprocess predictions
|
97 |
+
preds = preds[preds[..., 4] > 0.25]
|
98 |
+
return YoloResult(boxes=preds, names=names)
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
import sys
|
103 |
+
import matplotlib.pyplot as plt
|
104 |
+
|
105 |
+
image = sys.argv[1]
|
106 |
+
image = cv2.imread(image)
|
107 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
108 |
+
|
109 |
+
layout = inference(image)
|
110 |
+
|
111 |
+
bitmap = np.ones(image.shape[:2], dtype=np.uint8)
|
112 |
+
h, w = bitmap.shape
|
113 |
+
vcls = ["abandon", "figure", "table", "isolate_formula", "formula_caption"]
|
114 |
+
for i, d in enumerate(layout.boxes):
|
115 |
+
x0, y0, x1, y1 = d.xyxy.squeeze()
|
116 |
+
x0, y0, x1, y1 = (
|
117 |
+
np.clip(int(x0 - 1), 0, w - 1),
|
118 |
+
np.clip(int(h - y1 - 1), 0, h - 1),
|
119 |
+
np.clip(int(x1 + 1), 0, w - 1),
|
120 |
+
np.clip(int(h - y0 + 1), 0, h - 1),
|
121 |
+
)
|
122 |
+
if layout.names[int(d.cls)] in vcls:
|
123 |
+
bitmap[y0:y1, x0:x1] = 0
|
124 |
+
else:
|
125 |
+
bitmap[y0:y1, x0:x1] = i + 2
|
126 |
+
bitmap = bitmap[::-1, :]
|
127 |
+
|
128 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 6))
|
129 |
+
ax[0].imshow(image)
|
130 |
+
ax[1].imshow(bitmap)
|
131 |
+
plt.show()
|