wwymak's picture
lunar lander tuned, 1e6 timesteps, params: {'n_steps': 1024, 'n_epochs': 20, 'discount_factor_gamma': 0.999}
d5487bb
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe35681aca0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe35681ad30>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe35681adc0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe35681ae50>",
"_build": "<function ActorCriticPolicy._build at 0x7fe35681aee0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe35681af70>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe356820040>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3568200d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe356820160>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3568201f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe356820280>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fe356810f90>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652310357.1359532,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrhzjwUeI+6Gq0NvPahLLlmSqY624+cOAAAgD8AAIA/s1r0vRInpj4eSMM9uomXvrV9GL3TK1Q9AAAAAAAAAADAcIo90V/qPf4JLL70W5O+bW40vUfyQr0AAAAAAAAAADPaLL2skoo/bmbSvfBxCb/GA3O9fiEoPAAAAAAAAAAATbNePSWBPj8Hwa+8MabTvu+VND3KB6Q8AAAAAAAAAAAz01y9KXgsujbtjzvXvtg4K2bPulHtLroAAAAAAACAPzNQAL54p6c9bXiOPiNhXL6t54m22uYvPQAAAAAAAAAA+icUPkVDGD/93lC+4E2yvl5+nT0Vt4O9AAAAAAAAAAAmm1Y+OqSsP2b8Ez/Jfta+bBGoPkbdtj4AAAAAAAAAAECNoz1cB3G6Yom4Oi/RCzZ87iI7/RnYuQAAgD8AAIA/nZdavsWLEj7dqdA+Wa3iveJ6sT22OuI9AAAAAAAAAABNnhq9qexGvBtCLLt+Ygg9FQ+2Pf7I2b0AAIA/AACAPzNWXD0ndRA/OIf6vZ04tb4Bol88qdLHvAAAAAAAAAAAmtM/PMNxfrruA9Y0RcchMH243DpIjhK0AACAPwAAgD/N6ji885pjPxeiuDk0ysG+gNAQu6DJQz0AAAAAAAAAAGZKE75c6Sc92hOpPj+WG755GLY8bqtTPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMId/hrssaCb0CUhpRSlIwBbJRL7IwBdJRHQIUDokka/AV1fZQoaAZoCWgPQwiwrgrUYlZyQJSGlFKUaBVL+GgWR0CFBBfPX05EdX2UKGgGaAloD0MI5WA2AcZccECUhpRSlGgVTR4BaBZHQIUERpWV/tp1fZQoaAZoCWgPQwjQ1OsWgY1vQJSGlFKUaBVL8mgWR0CFBFh8YyfudX2UKGgGaAloD0MImx4UlKKOcUCUhpRSlGgVTQYBaBZHQIUEgtxuKoB1fZQoaAZoCWgPQwgaw5ygzfxwQJSGlFKUaBVNCgFoFkdAhQXT/ACW/3V9lChoBmgJaA9DCNC2mnWGfXFAlIaUUpRoFUv0aBZHQIUGSpT/ACZ1fZQoaAZoCWgPQwhXsI14MkNxQJSGlFKUaBVL/GgWR0CFBqny/bj+dX2UKGgGaAloD0MIPBOaJNYdcECUhpRSlGgVS+FoFkdAhQcP114gR3V9lChoBmgJaA9DCDC8kuQ5T3FAlIaUUpRoFU0HAWgWR0CFCAsiB5HFdX2UKGgGaAloD0MIEd+JWa+db0CUhpRSlGgVS/FoFkdAhQhtw71ZknV9lChoBmgJaA9DCErP9BIjGHFAlIaUUpRoFU0CAWgWR0CFCKUAT7EYdX2UKGgGaAloD0MIL/g0J691cUCUhpRSlGgVS/hoFkdAhQmCLEUCaXV9lChoBmgJaA9DCFWkwtiCgnJAlIaUUpRoFUvnaBZHQIUKX3WWhRJ1fZQoaAZoCWgPQwig/x68dixxQJSGlFKUaBVNBAFoFkdAhQs1HvttynV9lChoBmgJaA9DCJ60cFmFSXNAlIaUUpRoFUvyaBZHQIULRh6Skj51fZQoaAZoCWgPQwjk9PV8TY1yQJSGlFKUaBVL7mgWR0CFC1UjLSuydX2UKGgGaAloD0MIlsyxvGuwcUCUhpRSlGgVTQYBaBZHQIULbYmLLp11fZQoaAZoCWgPQwiRY+sZwiBvQJSGlFKUaBVNGAFoFkdAhQylYMfA9HV9lChoBmgJaA9DCLn+XZ+55nFAlIaUUpRoFUvlaBZHQIUMvQ2MsH11fZQoaAZoCWgPQwi63ct9cv1vQJSGlFKUaBVL9GgWR0CFDaVM23rldX2UKGgGaAloD0MIzH1yFCDMbkCUhpRSlGgVTQ0BaBZHQIUO4LZzxPR1fZQoaAZoCWgPQwhR3sfRHGlzQJSGlFKUaBVNCQFoFkdAhRBf/echDHV9lChoBmgJaA9DCGL4iJiSlHFAlIaUUpRoFUv9aBZHQIUQaOktVaR1fZQoaAZoCWgPQwgYXknyXGtyQJSGlFKUaBVNOwFoFkdAhRD2SEDhcnV9lChoBmgJaA9DCK65o//l6HJAlIaUUpRoFU0UAWgWR0CFEW+i8FpxdX2UKGgGaAloD0MIO8WqQdgicUCUhpRSlGgVS9ZoFkdAhRIn1FpfyHV9lChoBmgJaA9DCIiAQ6gS7nBAlIaUUpRoFU0MAWgWR0CFEi7ulXRxdX2UKGgGaAloD0MIsoF0sWkncECUhpRSlGgVS/ZoFkdAhRNOEEkjYHV9lChoBmgJaA9DCHyb/uwHcnBAlIaUUpRoFU0TAWgWR0CFE2EPlMh6dX2UKGgGaAloD0MIJTyh1585ckCUhpRSlGgVTQ8BaBZHQIUUOUD+zdF1fZQoaAZoCWgPQwgpQup2tj5xQJSGlFKUaBVL5mgWR0CFFHCv5gw5dX2UKGgGaAloD0MIg6Pk1XmAckCUhpRSlGgVTRsBaBZHQIUUvGlyimF1fZQoaAZoCWgPQwjYLJeNzoJxQJSGlFKUaBVNCQFoFkdAhRV4LkS26XV9lChoBmgJaA9DCApI+x9gg2dAlIaUUpRoFU0dAmgWR0CFFYqrilzmdX2UKGgGaAloD0MIhLuzdtuSc0CUhpRSlGgVTRQBaBZHQIUWuapgkTp1fZQoaAZoCWgPQwhvoMA7eadkQJSGlFKUaBVN6ANoFkdAhRa4Tj/+9HV9lChoBmgJaA9DCG/Tn/2IfnFAlIaUUpRoFUvOaBZHQIU1VG9YfXB1fZQoaAZoCWgPQwgsR8hAXlpxQJSGlFKUaBVL+2gWR0CFNVybQTmGdX2UKGgGaAloD0MI+u/Ba1eTcECUhpRSlGgVS/xoFkdAhTaKLsKLKnV9lChoBmgJaA9DCKOvIM1YAnJAlIaUUpRoFU0EAWgWR0CFN7mseXAudX2UKGgGaAloD0MIjXvzG2ZkcECUhpRSlGgVS/BoFkdAhTfKkVN5+3V9lChoBmgJaA9DCNSAQdInrG5AlIaUUpRoFUv1aBZHQIU366e5Fw11fZQoaAZoCWgPQwiLGeHtQflyQJSGlFKUaBVNMwFoFkdAhTiyBbwBo3V9lChoBmgJaA9DCExSmWIOom5AlIaUUpRoFUvuaBZHQIU4sfigkC51fZQoaAZoCWgPQwiwAKYMXKVwQJSGlFKUaBVL6WgWR0CFOUqxTsIFdX2UKGgGaAloD0MI1PIDV/kIdECUhpRSlGgVS+xoFkdAhTmJqh11XHV9lChoBmgJaA9DCH/d6c6TIHJAlIaUUpRoFUvZaBZHQIU54u5BkZt1fZQoaAZoCWgPQwg7URISqRdxQJSGlFKUaBVL7GgWR0CFOnLBbfP5dX2UKGgGaAloD0MIg4WTNP+lc0CUhpRSlGgVTTABaBZHQIU6hHf/FR51fZQoaAZoCWgPQwh1lIPZhApxQJSGlFKUaBVNHwFoFkdAhTsenqFAV3V9lChoBmgJaA9DCI22KonsxHFAlIaUUpRoFUvzaBZHQIU7uoegctJ1fZQoaAZoCWgPQwh4YWu2cvNwQJSGlFKUaBVL+mgWR0CFO+4kNWludX2UKGgGaAloD0MI0jk/xXEGdECUhpRSlGgVS/NoFkdAhTwL4WUKRnV9lChoBmgJaA9DCN3T1R2LfHJAlIaUUpRoFUvwaBZHQIU9JFgDzRR1fZQoaAZoCWgPQwjAsz16Q5xxQJSGlFKUaBVNJAFoFkdAhT1dyDIzWXV9lChoBmgJaA9DCDl/EwrR3nBAlIaUUpRoFUvfaBZHQIU9wzBRAKR1fZQoaAZoCWgPQwjm54am7DVzQJSGlFKUaBVL5GgWR0CFPfXXAdn1dX2UKGgGaAloD0MIJ2w/GSMnc0CUhpRSlGgVTQABaBZHQIU+2v8qFyt1fZQoaAZoCWgPQwg4Mo/8QbJyQJSGlFKUaBVL6mgWR0CFPv4QjD8+dX2UKGgGaAloD0MIscBXdKuQcECUhpRSlGgVS/RoFkdAhT9IJRfnfXV9lChoBmgJaA9DCHvct1pnEHFAlIaUUpRoFUv9aBZHQIVAINI9TxZ1fZQoaAZoCWgPQwh9XvHUY8pxQJSGlFKUaBVL/mgWR0CFQGws5GSZdX2UKGgGaAloD0MIIZViR2MAb0CUhpRSlGgVS+FoFkdAhUCUF8ohIXV9lChoBmgJaA9DCBtGQfA4S3FAlIaUUpRoFUvoaBZHQIVA2I9C/oJ1fZQoaAZoCWgPQwgOvFruDOxxQJSGlFKUaBVNDQFoFkdAhUE2u5jH43V9lChoBmgJaA9DCBke+1mssXBAlIaUUpRoFUv+aBZHQIVCH2Cdz4l1fZQoaAZoCWgPQwifrBiuTpxxQJSGlFKUaBVL8WgWR0CFQmikfs/qdX2UKGgGaAloD0MI3XpND8pRckCUhpRSlGgVTQIBaBZHQIVDIaaTfSB1fZQoaAZoCWgPQwggzy7f+nhvQJSGlFKUaBVL/mgWR0CFQyeUY8+zdX2UKGgGaAloD0MIMuauJeSycUCUhpRSlGgVS/VoFkdAhUQh/qgRLHV9lChoBmgJaA9DCMLdWbutB3FAlIaUUpRoFUvdaBZHQIVERsKsuFp1fZQoaAZoCWgPQwjT3AphNVFxQJSGlFKUaBVL82gWR0CFRE8V58jSdX2UKGgGaAloD0MIZDvfTw2Pb0CUhpRSlGgVS/9oFkdAhUUCQkona3V9lChoBmgJaA9DCGYwRiRK3nJAlIaUUpRoFUvXaBZHQIVFHt8eCCl1fZQoaAZoCWgPQwjPvBx2X1JzQJSGlFKUaBVNCgFoFkdAhUZtPgvUSnV9lChoBmgJaA9DCBYW3A/4YW9AlIaUUpRoFUv8aBZHQIVGdT1kDp11fZQoaAZoCWgPQwjLorCLIjFzQJSGlFKUaBVL72gWR0CFRva+N96UdX2UKGgGaAloD0MIgm+aPrvBb0CUhpRSlGgVS+hoFkdAhUc0mMOwxHV9lChoBmgJaA9DCGhdo+VAD3JAlIaUUpRoFUvvaBZHQIVHQkNWluZ1fZQoaAZoCWgPQwghBU8hVzZxQJSGlFKUaBVL2WgWR0CFR22v0RODdX2UKGgGaAloD0MI18OXiaJycECUhpRSlGgVS+5oFkdAhUegEU0vXnV9lChoBmgJaA9DCEDZlCv8EXBAlIaUUpRoFUv5aBZHQIVJJYcNpdt1fZQoaAZoCWgPQwiWe4FZIdxuQJSGlFKUaBVL3GgWR0CFSVBfKISEdX2UKGgGaAloD0MIXyf1ZelTckCUhpRSlGgVS/ZoFkdAhUlY0VJti3V9lChoBmgJaA9DCOwX7IYtanFAlIaUUpRoFUvtaBZHQIVK7j/+85F1fZQoaAZoCWgPQwgBF2TLcnFyQJSGlFKUaBVL+GgWR0CFSz7iQ1aXdX2UKGgGaAloD0MIA0NWt/plc0CUhpRSlGgVTSwBaBZHQIVLq0jTrmh1fZQoaAZoCWgPQwhgV5OnbHtxQJSGlFKUaBVL72gWR0CFS/Qla8pTdX2UKGgGaAloD0MIVBoxs891cECUhpRSlGgVS9poFkdAhUzAz544ZXV9lChoBmgJaA9DCO7O2m0Xs3JAlIaUUpRoFUvraBZHQIVN91wHZ9N1fZQoaAZoCWgPQwgqkUQvoylzQJSGlFKUaBVL52gWR0CFThuTA31jdX2UKGgGaAloD0MINBKhEezicUCUhpRSlGgVS/JoFkdAhU6IBBAv+XV9lChoBmgJaA9DCDNuaqA553FAlIaUUpRoFU0PAWgWR0CFTpHTZxrBdX2UKGgGaAloD0MIEjC6vHmGckCUhpRSlGgVS/poFkdAhU8wNsnAqXV9lChoBmgJaA9DCEjCvp1E2XBAlIaUUpRoFUvNaBZHQIVPvGS6lLx1fZQoaAZoCWgPQwj7JHfYxJ9wQJSGlFKUaBVL32gWR0CFUEIuXeFddX2UKGgGaAloD0MIY9NKIZDgc0CUhpRSlGgVS/FoFkdAhVCjuKGcnXV9lChoBmgJaA9DCBiT/l7KyXJAlIaUUpRoFU2pAWgWR0CFUbctXgccdX2UKGgGaAloD0MI8s02N6YLcECUhpRSlGgVTcwBaBZHQIVR0N+b3Gp1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 1240,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 256,
"n_epochs": 20,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}