wirthy21 commited on
Commit
888e955
·
verified ·
1 Parent(s): c666e8d
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.09 +/- 14.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7860c80ab910>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7860c80ab9a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7860c80aba30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7860c80abac0>", "_build": "<function ActorCriticPolicy._build at 0x7860c80abb50>", "forward": "<function ActorCriticPolicy.forward at 0x7860c80abbe0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7860c80abc70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7860c80abd00>", "_predict": "<function ActorCriticPolicy._predict at 0x7860c80abd90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7860c80abe20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7860c80abeb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7860c80abf40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7860c8054ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731512563185082128, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABpdP71PH6g/cEztvR853r69F1e9MmJDvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw4vi97F+MAWyUTTUBjAF0lEdAm2nX18LKFXV9lChoBkdAcDZawD/2kGgHTSIBaAhHQJtrjAwfyPN1fZQoaAZHQHKHPkmx+rloB00aAWgIR0Cbblj8DSw4dX2UKGgGR0BvAYP7N0NjaAdNNwFoCEdAm3AQMMI/q3V9lChoBkdAbhb4Oc2BKGgHTQwBaAhHQJtxmIcinpB1fZQoaAZHQDqZtZV4oqloB00VAWgIR0Cbcx3l0YCRdX2UKGgGR0BwmctqYZ2qaAdNNwFoCEdAm3YVBY3eenV9lChoBkdAcVHVFx4pt2gHTRUBaAhHQJt3k0fozN51fZQoaAZHQHBHTMJQcghoB00IAWgIR0CbeP7aZhKEdX2UKGgGR0BTHuNYKYzBaAdLw2gIR0CbehjG1hLHdX2UKGgGR0Bx0KAc1fmcaAdNZgFoCEdAm31a7qY7aXV9lChoBkdActe9xZMcqGgHTQMBaAhHQJt+0tdzGPx1fZQoaAZHQHDSsSf16E9oB00wAWgIR0CbgIcvduYQdX2UKGgGR0Bx3OGahHskaAdNLgFoCEdAm4OKZtvXLHV9lChoBkdAaoCrhBJI2GgHTS0BaAhHQJuFnseGO+91fZQoaAZHQHF4NaY/mkpoB0vwaAhHQJuHWxgRbr11fZQoaAZHQG6H1d5Y5ktoB00cAWgIR0CbiUqjrRjSdX2UKGgGR0Bw/0u01IiDaAdL92gIR0CbjO1g6U7kdX2UKGgGR0BwSDyNGViXaAdNLQFoCEdAm486s6q82HV9lChoBkdAcP6zAN5MUWgHTU4BaAhHQJuRgJ4SpR51fZQoaAZHQHA4YgFHJ91oB01MAWgIR0CblHwUQCjldX2UKGgGR0Bvsy9/SYw7aAdNFwFoCEdAm5XyaZx7zHV9lChoBkdAbncCxNZeRmgHTQEBaAhHQJuXWRfWtlt1fZQoaAZHQGiG0Vzp5eJoB01IAmgIR0Cbm8q7yxzJdX2UKGgGR0Bq1klme18caAdNKwFoCEdAm51p1A7gbnV9lChoBkdAblIfGuLaVWgHTREBaAhHQJue6A+Y+jd1fZQoaAZHQHGoCmygPEtoB00MAWgIR0CboYYv38GcdX2UKGgGR0BxYFtQ9A5aaAdNOgFoCEdAm6NEQGwA2nV9lChoBkdAcQupOvdM02gHTSgBaAhHQJuk3j3mFJx1fZQoaAZHQHE9iPIXCTFoB0v3aAhHQJumMcvM8ox1fZQoaAZHQG68tVrAP/doB003AWgIR0CbqSFtbcGkdX2UKGgGR0BxQRovi97GaAdNHAFoCEdAm6qsgMc6vXV9lChoBkdAcCNEidJ8OWgHTTIBaAhHQJusYtg8bJh1fZQoaAZHQG/vFchTwUhoB00XAWgIR0CbrxX/YJ3QdX2UKGgGR0Bu2kqBmPHUaAdNJwFoCEdAm7DH3QD3d3V9lChoBkdAb63Oh0yP/GgHTSIBaAhHQJuyWUD+zdF1fZQoaAZHQGsjRLK3d9FoB00XAWgIR0Cbs+MfA9FGdX2UKGgGR0BxE3hky1u0aAdL92gIR0CbtmkPtlZpdX2UKGgGR0BtoMA3kxREaAdNOwFoCEdAm7hMNtqHoHV9lChoBkdAcoclMRHww2gHS/VoCEdAm7oISYgJTnV9lChoBkdAcAD9Zid8RmgHTTYBaAhHQJu8QjbBXS11fZQoaAZHQG/CpeE7GNtoB00tAWgIR0CbwAZPVNHpdX2UKGgGR0BvQ8URFqi5aAdNQAFoCEdAm8J6sMiKSHV9lChoBkdAZME7bL2YfGgHTTQCaAhHQJvHmM2m52B1fZQoaAZHQGxvrcsUZeloB01KAWgIR0CbyYKx9oexdX2UKGgGR0BxAZPDYRNAaAdNHAFoCEdAm8sReb/ff3V9lChoBkdAbdk3m3fAK2gHTV8BaAhHQJvOMco6S1V1fZQoaAZHQHAMaEWZZ0VoB01MAWgIR0Cb0CcFyJbddX2UKGgGR0Bv1+7rcCYDaAdNGgFoCEdAm9G4eDFqBXV9lChoBkdAcWwlrdnCf2gHTTgBaAhHQJvTZnUUfxN1fZQoaAZHQHGQFDBuXNVoB01VAWgIR0Cb1n5Ec81XdX2UKGgGR0BxNiVSn+AFaAdNKQFoCEdAm9gXYxtYS3V9lChoBkdAbG6sA/9pAWgHTWwBaAhHQJvaFZ0Syt51fZQoaAZHQHF8Llmvnr9oB0vVaAhHQJvccvexfOV1fZQoaAZHQE2jkxREWqNoB0vTaAhHQJvdrbN8ma91fZQoaAZHQHEY5gTh5xBoB00hAWgIR0Cb3z8NQTEjdX2UKGgGR0BwUrvx6OYIaAdNOQFoCEdAm+D5NsWO63V9lChoBkdAcJm7zCk43mgHTTgBaAhHQJvj+uzQeFN1fZQoaAZHQHGOxi1AqutoB0v7aAhHQJvlYvM8ox51fZQoaAZHQG25MQ2/BWRoB00LAWgIR0Cb5tEsJ6Y3dX2UKGgGR0BmMfjABT4taAdN6ANoCEdAm+31BdD6WXV9lChoBkdAcphYeT3Zf2gHTVQBaAhHQJvx61ndweh1fZQoaAZHQHEvlL39JjFoB003AWgIR0Cb9E3XZoPDdX2UKGgGR0By2do7FKkEaAdNJwFoCEdAm/aSEDhcaHV9lChoBkdAbUs/xDst02gHTRIBaAhHQJv4YkOZssR1fZQoaAZHQHGZkcn3L3doB00+AWgIR0Cb+2M4cWCVdX2UKGgGR0BxgoPMB6rvaAdNGAFoCEdAm/zx0p3HJnV9lChoBkdAci2I4lyBCmgHTV4BaAhHQJv+1cQiA2B1fZQoaAZHQHFm6ekHlfZoB00PAWgIR0CcAXfVqesgdX2UKGgGR0BxpU61b7j1aAdNSwFoCEdAnANQDRtxdnV9lChoBkdAcUhqJ/G2kWgHTUkBaAhHQJwFFZIQOFx1fZQoaAZHQHH+uZgG8mNoB0v/aAhHQJwHqJj2Bat1fZQoaAZHQHJu8U7CBPNoB002AWgIR0CcCW9gF5fMdX2UKGgGR0Bwi8WoFV1faAdNLwFoCEdAnAsThxYJV3V9lChoBkdAcgLLgn+hoWgHTUQBaAhHQJwM0bedkJ91fZQoaAZHQHAGtrTH80loB00wAWgIR0CcD9IXj2i+dX2UKGgGR0BmJHj+717IaAdNKgJoCEdAnBLvFFUhm3V9lChoBkdAZOkJZ4fOlmgHTegDaAhHQJwZw5aNdZ91fZQoaAZHQHEpc189fTloB01fAWgIR0CcHNyIYWLxdX2UKGgGR0ByX6r4nF5waAdNBwFoCEdAnB5N0V8CxXV9lChoBkdAcR/8Yht+C2gHTTUBaAhHQJwgPkuHvc91fZQoaAZHQHBcLWZqmCRoB01PAWgIR0CcIqDD0lJIdX2UKGgGR0BxA4qmTC+DaAdNEgFoCEdAnCYoTfzjFXV9lChoBkdAcFaJWNm16WgHTSYBaAhHQJwobXJ5miB1fZQoaAZHQHHX0pEx7AtoB00HAWgIR0CcKltzS1E3dX2UKGgGR0ByTiT6i0v5aAdNHAFoCEdAnC1SvX9R8HV9lChoBkdAcjb91loUSWgHTQIBaAhHQJwus5yU9p11fZQoaAZHQG1MqfFrEcdoB00aAWgIR0CcMDtoBaLXdX2UKGgGR0BvjZItlI3BaAdNGgFoCEdAnDHML4N7SnV9lChoBkdAbhHonKGL1mgHTSwBaAhHQJw0sNUfgaZ1fZQoaAZHQHGL5aV2Rq5oB01CAWgIR0CcNnDMeOn3dX2UKGgGR0ByIwHAymALaAdNIgFoCEdAnDgGnKnvUnV9lChoBkdAcGt+5e7cwmgHTToBaAhHQJw65dpqREF1fZQoaAZHQHGv7k0aZQZoB00zAWgIR0CcPLkBjnV5dX2UKGgGR0BxVTvRZ2ZBaAdNBwFoCEdAnD4rbDdgv3V9lChoBkdAcAhjkMkQgGgHTSUBaAhHQJw/1Lzwtrd1fZQoaAZHQHIsOZ1FH8VoB00aAWgIR0CcQqeKbaysdX2UKGgGR0BwwvhZQpF1aAdNIwFoCEdAnERKB7NSqHV9lChoBkdAb0xo2XLNfWgHTQYBaAhHQJxFvkxREWt1fZQoaAZHQHKPuXRgJC1oB00EAWgIR0CcRycuJ1q4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93a6d9221652c8e21017dbf4c5b580625242c9f52c42726b9b99ba946e3e6e62
3
+ size 147350
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7860c80ab910>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7860c80ab9a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7860c80aba30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7860c80abac0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7860c80abb50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7860c80abbe0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7860c80abc70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7860c80abd00>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7860c80abd90>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7860c80abe20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7860c80abeb0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7860c80abf40>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7860c8054ec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1731512563185082128,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABpdP71PH6g/cEztvR853r69F1e9MmJDvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBw4vi97F+MAWyUTTUBjAF0lEdAm2nX18LKFXV9lChoBkdAcDZawD/2kGgHTSIBaAhHQJtrjAwfyPN1fZQoaAZHQHKHPkmx+rloB00aAWgIR0Cbblj8DSw4dX2UKGgGR0BvAYP7N0NjaAdNNwFoCEdAm3AQMMI/q3V9lChoBkdAbhb4Oc2BKGgHTQwBaAhHQJtxmIcinpB1fZQoaAZHQDqZtZV4oqloB00VAWgIR0Cbcx3l0YCRdX2UKGgGR0BwmctqYZ2qaAdNNwFoCEdAm3YVBY3eenV9lChoBkdAcVHVFx4pt2gHTRUBaAhHQJt3k0fozN51fZQoaAZHQHBHTMJQcghoB00IAWgIR0CbeP7aZhKEdX2UKGgGR0BTHuNYKYzBaAdLw2gIR0CbehjG1hLHdX2UKGgGR0Bx0KAc1fmcaAdNZgFoCEdAm31a7qY7aXV9lChoBkdActe9xZMcqGgHTQMBaAhHQJt+0tdzGPx1fZQoaAZHQHDSsSf16E9oB00wAWgIR0CbgIcvduYQdX2UKGgGR0Bx3OGahHskaAdNLgFoCEdAm4OKZtvXLHV9lChoBkdAaoCrhBJI2GgHTS0BaAhHQJuFnseGO+91fZQoaAZHQHF4NaY/mkpoB0vwaAhHQJuHWxgRbr11fZQoaAZHQG6H1d5Y5ktoB00cAWgIR0CbiUqjrRjSdX2UKGgGR0Bw/0u01IiDaAdL92gIR0CbjO1g6U7kdX2UKGgGR0BwSDyNGViXaAdNLQFoCEdAm486s6q82HV9lChoBkdAcP6zAN5MUWgHTU4BaAhHQJuRgJ4SpR51fZQoaAZHQHA4YgFHJ91oB01MAWgIR0CblHwUQCjldX2UKGgGR0Bvsy9/SYw7aAdNFwFoCEdAm5XyaZx7zHV9lChoBkdAbncCxNZeRmgHTQEBaAhHQJuXWRfWtlt1fZQoaAZHQGiG0Vzp5eJoB01IAmgIR0Cbm8q7yxzJdX2UKGgGR0Bq1klme18caAdNKwFoCEdAm51p1A7gbnV9lChoBkdAblIfGuLaVWgHTREBaAhHQJue6A+Y+jd1fZQoaAZHQHGoCmygPEtoB00MAWgIR0CboYYv38GcdX2UKGgGR0BxYFtQ9A5aaAdNOgFoCEdAm6NEQGwA2nV9lChoBkdAcQupOvdM02gHTSgBaAhHQJuk3j3mFJx1fZQoaAZHQHE9iPIXCTFoB0v3aAhHQJumMcvM8ox1fZQoaAZHQG68tVrAP/doB003AWgIR0CbqSFtbcGkdX2UKGgGR0BxQRovi97GaAdNHAFoCEdAm6qsgMc6vXV9lChoBkdAcCNEidJ8OWgHTTIBaAhHQJusYtg8bJh1fZQoaAZHQG/vFchTwUhoB00XAWgIR0CbrxX/YJ3QdX2UKGgGR0Bu2kqBmPHUaAdNJwFoCEdAm7DH3QD3d3V9lChoBkdAb63Oh0yP/GgHTSIBaAhHQJuyWUD+zdF1fZQoaAZHQGsjRLK3d9FoB00XAWgIR0Cbs+MfA9FGdX2UKGgGR0BxE3hky1u0aAdL92gIR0CbtmkPtlZpdX2UKGgGR0BtoMA3kxREaAdNOwFoCEdAm7hMNtqHoHV9lChoBkdAcoclMRHww2gHS/VoCEdAm7oISYgJTnV9lChoBkdAcAD9Zid8RmgHTTYBaAhHQJu8QjbBXS11fZQoaAZHQG/CpeE7GNtoB00tAWgIR0CbwAZPVNHpdX2UKGgGR0BvQ8URFqi5aAdNQAFoCEdAm8J6sMiKSHV9lChoBkdAZME7bL2YfGgHTTQCaAhHQJvHmM2m52B1fZQoaAZHQGxvrcsUZeloB01KAWgIR0CbyYKx9oexdX2UKGgGR0BxAZPDYRNAaAdNHAFoCEdAm8sReb/ff3V9lChoBkdAbdk3m3fAK2gHTV8BaAhHQJvOMco6S1V1fZQoaAZHQHAMaEWZZ0VoB01MAWgIR0Cb0CcFyJbddX2UKGgGR0Bv1+7rcCYDaAdNGgFoCEdAm9G4eDFqBXV9lChoBkdAcWwlrdnCf2gHTTgBaAhHQJvTZnUUfxN1fZQoaAZHQHGQFDBuXNVoB01VAWgIR0Cb1n5Ec81XdX2UKGgGR0BxNiVSn+AFaAdNKQFoCEdAm9gXYxtYS3V9lChoBkdAbG6sA/9pAWgHTWwBaAhHQJvaFZ0Syt51fZQoaAZHQHF8Llmvnr9oB0vVaAhHQJvccvexfOV1fZQoaAZHQE2jkxREWqNoB0vTaAhHQJvdrbN8ma91fZQoaAZHQHEY5gTh5xBoB00hAWgIR0Cb3z8NQTEjdX2UKGgGR0BwUrvx6OYIaAdNOQFoCEdAm+D5NsWO63V9lChoBkdAcJm7zCk43mgHTTgBaAhHQJvj+uzQeFN1fZQoaAZHQHGOxi1AqutoB0v7aAhHQJvlYvM8ox51fZQoaAZHQG25MQ2/BWRoB00LAWgIR0Cb5tEsJ6Y3dX2UKGgGR0BmMfjABT4taAdN6ANoCEdAm+31BdD6WXV9lChoBkdAcphYeT3Zf2gHTVQBaAhHQJvx61ndweh1fZQoaAZHQHEvlL39JjFoB003AWgIR0Cb9E3XZoPDdX2UKGgGR0By2do7FKkEaAdNJwFoCEdAm/aSEDhcaHV9lChoBkdAbUs/xDst02gHTRIBaAhHQJv4YkOZssR1fZQoaAZHQHGZkcn3L3doB00+AWgIR0Cb+2M4cWCVdX2UKGgGR0BxgoPMB6rvaAdNGAFoCEdAm/zx0p3HJnV9lChoBkdAci2I4lyBCmgHTV4BaAhHQJv+1cQiA2B1fZQoaAZHQHFm6ekHlfZoB00PAWgIR0CcAXfVqesgdX2UKGgGR0BxpU61b7j1aAdNSwFoCEdAnANQDRtxdnV9lChoBkdAcUhqJ/G2kWgHTUkBaAhHQJwFFZIQOFx1fZQoaAZHQHH+uZgG8mNoB0v/aAhHQJwHqJj2Bat1fZQoaAZHQHJu8U7CBPNoB002AWgIR0CcCW9gF5fMdX2UKGgGR0Bwi8WoFV1faAdNLwFoCEdAnAsThxYJV3V9lChoBkdAcgLLgn+hoWgHTUQBaAhHQJwM0bedkJ91fZQoaAZHQHAGtrTH80loB00wAWgIR0CcD9IXj2i+dX2UKGgGR0BmJHj+717IaAdNKgJoCEdAnBLvFFUhm3V9lChoBkdAZOkJZ4fOlmgHTegDaAhHQJwZw5aNdZ91fZQoaAZHQHEpc189fTloB01fAWgIR0CcHNyIYWLxdX2UKGgGR0ByX6r4nF5waAdNBwFoCEdAnB5N0V8CxXV9lChoBkdAcR/8Yht+C2gHTTUBaAhHQJwgPkuHvc91fZQoaAZHQHBcLWZqmCRoB01PAWgIR0CcIqDD0lJIdX2UKGgGR0BxA4qmTC+DaAdNEgFoCEdAnCYoTfzjFXV9lChoBkdAcFaJWNm16WgHTSYBaAhHQJwobXJ5miB1fZQoaAZHQHHX0pEx7AtoB00HAWgIR0CcKltzS1E3dX2UKGgGR0ByTiT6i0v5aAdNHAFoCEdAnC1SvX9R8HV9lChoBkdAcjb91loUSWgHTQIBaAhHQJwus5yU9p11fZQoaAZHQG1MqfFrEcdoB00aAWgIR0CcMDtoBaLXdX2UKGgGR0BvjZItlI3BaAdNGgFoCEdAnDHML4N7SnV9lChoBkdAbhHonKGL1mgHTSwBaAhHQJw0sNUfgaZ1fZQoaAZHQHGL5aV2Rq5oB01CAWgIR0CcNnDMeOn3dX2UKGgGR0ByIwHAymALaAdNIgFoCEdAnDgGnKnvUnV9lChoBkdAcGt+5e7cwmgHTToBaAhHQJw65dpqREF1fZQoaAZHQHGv7k0aZQZoB00zAWgIR0CcPLkBjnV5dX2UKGgGR0BxVTvRZ2ZBaAdNBwFoCEdAnD4rbDdgv3V9lChoBkdAcAhjkMkQgGgHTSUBaAhHQJw/1Lzwtrd1fZQoaAZHQHIsOZ1FH8VoB00aAWgIR0CcQqeKbaysdX2UKGgGR0BwwvhZQpF1aAdNIwFoCEdAnERKB7NSqHV9lChoBkdAb0xo2XLNfWgHTQYBaAhHQJxFvkxREWt1fZQoaAZHQHKPuXRgJC1oB00EAWgIR0CcRycuJ1q4dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d67f7275429b3429b7bf6dd3d43153785dc7d910eaf1a9e5f561b41bc249b44
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c2ae039a7b2d49d5ef7fb8ea137a4fc569a438c13d27fa3b7ed8d46efd8a268
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.0906044, "std_reward": 14.781652678867026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-13T16:31:46.515759"}