Sadjad Alikhani
commited on
Upload 5 files
Browse files- inference.py +171 -0
- input_preprocess.py +296 -0
- load_data.py +39 -0
- lwm_model.py +173 -0
- model.py +160 -0
inference.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Sun Sep 15 18:27:17 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import csv
|
10 |
+
import json
|
11 |
+
import shutil
|
12 |
+
import random
|
13 |
+
import argparse
|
14 |
+
from datetime import datetime
|
15 |
+
import pandas as pd
|
16 |
+
import time
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch.utils.data import Dataset, DataLoader, TensorDataset
|
21 |
+
from torch.optim import Adam
|
22 |
+
import numpy as np
|
23 |
+
from lwm_model import LWM, load_model
|
24 |
+
import warnings
|
25 |
+
warnings.filterwarnings('ignore')
|
26 |
+
from input_preprocess import *
|
27 |
+
|
28 |
+
# Device configuration
|
29 |
+
device_idx_ds = 3
|
30 |
+
device = torch.device(f'cuda:{device_idx_ds}' if torch.cuda.is_available() else "cpu")
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
torch.cuda.empty_cache()
|
33 |
+
|
34 |
+
# Folders
|
35 |
+
# MODELS_FOLDER = 'models/'
|
36 |
+
|
37 |
+
def dataset_gen(preprocessed_chs, input_type, scenario_idxs, lwm_model):
|
38 |
+
|
39 |
+
if input_type in ['cls_emb', 'channel_emb']:
|
40 |
+
dataset = prepare_for_LWM(preprocessed_chs, device)
|
41 |
+
elif input_type == 'raw':
|
42 |
+
dataset = create_raw_dataset(preprocessed_chs, device)
|
43 |
+
|
44 |
+
if input_type in ['cls_emb','channel_emb']:
|
45 |
+
# model = LWM().to(device)
|
46 |
+
# ckpt_name = 'model_weights.pth'
|
47 |
+
# ckpt_path = os.path.join(MODELS_FOLDER, ckpt_name)
|
48 |
+
# lwm_model = load_model(model, ckpt_path, device)
|
49 |
+
# print(f"Model loaded successfully on {device}")
|
50 |
+
|
51 |
+
# Process data through LWM
|
52 |
+
lwm_loss, embedding_data = evaluate(lwm_model, dataset)
|
53 |
+
|
54 |
+
print(f'LWM loss: {lwm_loss:.4f}')
|
55 |
+
|
56 |
+
if input_type == 'cls_emb':
|
57 |
+
embedding_data = embedding_data[:, 0]
|
58 |
+
elif input_type == 'channel_emb':
|
59 |
+
embedding_data = embedding_data[:, 1:]
|
60 |
+
|
61 |
+
dataset = embedding_data.float()
|
62 |
+
|
63 |
+
return dataset
|
64 |
+
|
65 |
+
|
66 |
+
def prepare_for_LWM(data, device, batch_size=64, shuffle=False):
|
67 |
+
|
68 |
+
input_ids, masked_tokens, masked_pos = zip(*data)
|
69 |
+
|
70 |
+
input_ids_tensor = torch.tensor(input_ids, device=device).float()
|
71 |
+
masked_tokens_tensor = torch.tensor(masked_tokens, device=device).float()
|
72 |
+
masked_pos_tensor = torch.tensor(masked_pos, device=device).long()
|
73 |
+
|
74 |
+
dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor)
|
75 |
+
|
76 |
+
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
|
77 |
+
|
78 |
+
|
79 |
+
def create_raw_dataset(data, device):
|
80 |
+
"""Create a dataset for raw channel data."""
|
81 |
+
input_ids, _, _ = zip(*data)
|
82 |
+
input_data = torch.tensor(input_ids, device=device)[:, 1:]
|
83 |
+
return input_data.float()
|
84 |
+
|
85 |
+
|
86 |
+
def label_gen(task, data, scenario, n_beams=64):
|
87 |
+
|
88 |
+
idxs = np.where(data['user']['LoS'] != -1)[0]
|
89 |
+
|
90 |
+
if task == 'LoS/NLoS Classification':
|
91 |
+
label = data['user']['LoS'][idxs]
|
92 |
+
elif task == 'Beam Prediction':
|
93 |
+
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
94 |
+
n_users = len(data['user']['channel'])
|
95 |
+
n_subbands = 1
|
96 |
+
fov = 120
|
97 |
+
|
98 |
+
# Setup Beamformers
|
99 |
+
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2)
|
100 |
+
|
101 |
+
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'],
|
102 |
+
phi=azi*np.pi/180,
|
103 |
+
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze()
|
104 |
+
for azi in beam_angles])
|
105 |
+
|
106 |
+
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float)
|
107 |
+
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'):
|
108 |
+
if data['user']['LoS'][ue_idx] == -1:
|
109 |
+
full_dbm[:,:,ue_idx] = np.nan
|
110 |
+
else:
|
111 |
+
chs = F1 @ data['user']['channel'][ue_idx]
|
112 |
+
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1))
|
113 |
+
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1)
|
114 |
+
|
115 |
+
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0)
|
116 |
+
best_beams = best_beams.astype(float)
|
117 |
+
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan
|
118 |
+
max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0)
|
119 |
+
|
120 |
+
label = best_beams[idxs]
|
121 |
+
|
122 |
+
return label.astype(int)
|
123 |
+
|
124 |
+
|
125 |
+
def steering_vec(array, phi=0, theta=0, kd=np.pi):
|
126 |
+
# phi = azimuth
|
127 |
+
# theta = elevation
|
128 |
+
idxs = DeepMIMOv3.ant_indices(array)
|
129 |
+
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd)
|
130 |
+
return resp / np.linalg.norm(resp)
|
131 |
+
|
132 |
+
|
133 |
+
def evaluate(model, dataloader):
|
134 |
+
|
135 |
+
model.eval()
|
136 |
+
running_loss = 0.0
|
137 |
+
outputs = []
|
138 |
+
criterionMCM = nn.MSELoss()
|
139 |
+
|
140 |
+
with torch.no_grad():
|
141 |
+
for batch in dataloader:
|
142 |
+
input_ids = batch[0]
|
143 |
+
masked_tokens = batch[1]
|
144 |
+
masked_pos = batch[2]
|
145 |
+
|
146 |
+
logits_lm, output = model(input_ids, masked_pos)
|
147 |
+
|
148 |
+
output_batch_preproc = output
|
149 |
+
outputs.append(output_batch_preproc)
|
150 |
+
|
151 |
+
loss_lm = criterionMCM(logits_lm, masked_tokens)
|
152 |
+
loss = loss_lm/torch.var(masked_tokens)
|
153 |
+
running_loss += loss.item()
|
154 |
+
|
155 |
+
average_loss = running_loss / len(dataloader)
|
156 |
+
output_total = torch.cat(outputs, dim=0)
|
157 |
+
|
158 |
+
return average_loss, output_total
|
159 |
+
|
160 |
+
|
161 |
+
def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64):
|
162 |
+
labels = []
|
163 |
+
for scenario_idx in scenario_idxs:
|
164 |
+
scenario_name = scenarios_list()[scenario_idx]
|
165 |
+
# data = DeepMIMO_data_gen(scenario_name)
|
166 |
+
data = deepmimo_data[scenario_idx]
|
167 |
+
labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams))
|
168 |
+
|
169 |
+
preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))]
|
170 |
+
|
171 |
+
return preprocessed_chs
|
input_preprocess.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Sep 13 16:13:29 2024
|
4 |
+
|
5 |
+
This script generates preprocessed data from wireless communication scenarios,
|
6 |
+
including token generation, patch creation, and data sampling for machine learning models.
|
7 |
+
|
8 |
+
@author: salikha4
|
9 |
+
"""
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import os
|
13 |
+
from tqdm import tqdm
|
14 |
+
import time
|
15 |
+
import pickle
|
16 |
+
import DeepMIMOv3
|
17 |
+
|
18 |
+
vars_folder = 'variables/'
|
19 |
+
os.makedirs(vars_folder, exist_ok=True)
|
20 |
+
|
21 |
+
#%% Scenarios List
|
22 |
+
def scenarios_list():
|
23 |
+
"""Returns an array of available scenarios."""
|
24 |
+
return np.array([
|
25 |
+
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma',
|
26 |
+
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
|
27 |
+
])
|
28 |
+
|
29 |
+
#%% Token Generation
|
30 |
+
def tokenizer(deepmimo_data, gen_raw=True):
|
31 |
+
"""
|
32 |
+
Generates tokens by preparing and preprocessing the dataset.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
scenario_idxs (list): Indices of the scenarios.
|
36 |
+
patch_gen (bool): Whether to generate patches. Defaults to True.
|
37 |
+
patch_size (int): Size of each patch. Defaults to 16.
|
38 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
|
39 |
+
gen_raw (bool): Whether to generate raw data. Defaults to False.
|
40 |
+
save_data (bool): Whether to save the preprocessed data. Defaults to False.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
|
44 |
+
"""
|
45 |
+
|
46 |
+
# Patch generation or loading
|
47 |
+
n_scenarios = len(deepmimo_data)
|
48 |
+
patches = [patch_maker(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
|
49 |
+
patches = np.vstack(patches)
|
50 |
+
|
51 |
+
# Define dimensions
|
52 |
+
patch_size = patches.shape[2]
|
53 |
+
n_patches = patches.shape[1]
|
54 |
+
n_masks_half = int(0.15 * n_patches / 2)
|
55 |
+
sequence_length = n_patches + 1
|
56 |
+
element_length = patch_size
|
57 |
+
|
58 |
+
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}
|
59 |
+
|
60 |
+
# Generate preprocessed channels
|
61 |
+
preprocessed_data = []
|
62 |
+
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
|
63 |
+
sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
|
64 |
+
preprocessed_data.append(sample)
|
65 |
+
|
66 |
+
return preprocessed_data
|
67 |
+
|
68 |
+
#%% Patch Creation
|
69 |
+
def patch_maker(data, patch_size=16, norm_factor=1e6):
|
70 |
+
"""
|
71 |
+
Creates patches from the dataset based on the scenario.
|
72 |
+
|
73 |
+
Args:-
|
74 |
+
patch_size (int): Size of each patch.
|
75 |
+
scenario (str): Selected scenario for data generation.
|
76 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
77 |
+
norm_factor (int): Normalization factor for channels.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
patch (numpy array): Generated patches.
|
81 |
+
"""
|
82 |
+
idxs = np.where(data['user']['LoS'] != -1)[0]
|
83 |
+
|
84 |
+
# Reshaping and normalizing channels
|
85 |
+
original_ch = data['user']['channel'][idxs]
|
86 |
+
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
|
87 |
+
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) * norm_factor
|
88 |
+
|
89 |
+
# Create patches
|
90 |
+
n_patches = flat_channels_complex.shape[1] // patch_size
|
91 |
+
patch = np.zeros((len(idxs), n_patches, patch_size))
|
92 |
+
for idx in range(n_patches):
|
93 |
+
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
|
94 |
+
|
95 |
+
return patch
|
96 |
+
|
97 |
+
|
98 |
+
#%% Data Generation for Scenario Areas
|
99 |
+
def DeepMIMO_data_gen(scenario):
|
100 |
+
"""
|
101 |
+
Generates or loads data for a given scenario.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
scenario (str): Scenario name.
|
105 |
+
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
106 |
+
save_data (bool): Whether to save generated data.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
data (dict): Loaded or generated data.
|
110 |
+
"""
|
111 |
+
|
112 |
+
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
113 |
+
|
114 |
+
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
|
115 |
+
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']),
|
116 |
+
users_per_row=row_column_users[scenario]['n_per_row'])
|
117 |
+
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
|
118 |
+
|
119 |
+
return data
|
120 |
+
|
121 |
+
#%%%
|
122 |
+
def get_parameters(scenario):
|
123 |
+
|
124 |
+
n_ant_bs = 32 #32
|
125 |
+
n_ant_ue = 1
|
126 |
+
n_subcarriers = 32 #32
|
127 |
+
scs = 30e3
|
128 |
+
|
129 |
+
row_column_users = {
|
130 |
+
'city_18_denver': {
|
131 |
+
'n_rows': 85,
|
132 |
+
'n_per_row': 82
|
133 |
+
},
|
134 |
+
'city_15_indianapolis': {
|
135 |
+
'n_rows': 80,
|
136 |
+
'n_per_row': 79
|
137 |
+
},
|
138 |
+
'city_19_oklahoma': {
|
139 |
+
'n_rows': 82,
|
140 |
+
'n_per_row': 75
|
141 |
+
},
|
142 |
+
'city_12_fortworth': {
|
143 |
+
'n_rows': 86,
|
144 |
+
'n_per_row': 72
|
145 |
+
},
|
146 |
+
'city_11_santaclara': {
|
147 |
+
'n_rows': 47,
|
148 |
+
'n_per_row': 114
|
149 |
+
},
|
150 |
+
'city_7_sandiego': {
|
151 |
+
'n_rows': 71,
|
152 |
+
'n_per_row': 83
|
153 |
+
}}
|
154 |
+
|
155 |
+
parameters = DeepMIMOv3.default_params()
|
156 |
+
parameters['dataset_folder'] = './scenarios'
|
157 |
+
parameters['scenario'] = scenario
|
158 |
+
|
159 |
+
if scenario == 'O1_3p5':
|
160 |
+
parameters['active_BS'] = np.array([4])
|
161 |
+
elif scenario in ['city_18_denver', 'city_15_indianapolis']:
|
162 |
+
parameters['active_BS'] = np.array([3])
|
163 |
+
else:
|
164 |
+
parameters['active_BS'] = np.array([1])
|
165 |
+
|
166 |
+
if scenario == 'Boston5G_3p5':
|
167 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
|
168 |
+
row_column_users[scenario]['n_rows'][1])
|
169 |
+
else:
|
170 |
+
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
|
171 |
+
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical
|
172 |
+
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
|
173 |
+
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
|
174 |
+
parameters['enable_BS2BS'] = False
|
175 |
+
parameters['OFDM']['subcarriers'] = n_subcarriers
|
176 |
+
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
|
177 |
+
|
178 |
+
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
|
179 |
+
parameters['num_paths'] = 20
|
180 |
+
|
181 |
+
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers
|
182 |
+
|
183 |
+
|
184 |
+
#%% Sample Generation
|
185 |
+
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
|
186 |
+
"""
|
187 |
+
Generates a sample for each user, including masking and tokenizing.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
user_idx (int): Index of the user.
|
191 |
+
patch (numpy array): Patches data.
|
192 |
+
word2id (dict): Dictionary for special tokens.
|
193 |
+
n_patches (int): Number of patches.
|
194 |
+
n_masks (int): Number of masks.
|
195 |
+
patch_size (int): Size of each patch.
|
196 |
+
gen_raw (bool): Whether to generate raw tokens.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
sample (list): Generated sample for the user.
|
200 |
+
"""
|
201 |
+
|
202 |
+
tokens = patch[user_idx]
|
203 |
+
input_ids = np.vstack((word2id['[CLS]'], tokens))
|
204 |
+
|
205 |
+
real_tokens_size = int(n_patches / 2)
|
206 |
+
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
|
207 |
+
masks_pos_imag = masks_pos_real + real_tokens_size
|
208 |
+
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
|
209 |
+
|
210 |
+
masked_tokens = []
|
211 |
+
for pos in masked_pos:
|
212 |
+
original_masked_tokens = input_ids[pos].copy()
|
213 |
+
masked_tokens.append(original_masked_tokens)
|
214 |
+
if not gen_raw:
|
215 |
+
rnd_num = np.random.rand()
|
216 |
+
if rnd_num < 0.1:
|
217 |
+
input_ids[pos] = np.random.rand(patch_size)
|
218 |
+
elif rnd_num < 0.9:
|
219 |
+
input_ids[pos] = word2id['[MASK]']
|
220 |
+
|
221 |
+
return [input_ids, masked_tokens, masked_pos]
|
222 |
+
|
223 |
+
|
224 |
+
#%% Sampling and Data Selection
|
225 |
+
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
|
226 |
+
"""
|
227 |
+
Performs uniform sampling on the dataset.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
dataset (dict): DeepMIMO dataset.
|
231 |
+
sampling_div (list): Step sizes along [x, y] dimensions.
|
232 |
+
n_rows (int): Number of rows for user selection.
|
233 |
+
users_per_row (int): Number of users per row.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
uniform_idxs (numpy array): Indices of the selected samples.
|
237 |
+
"""
|
238 |
+
cols = np.arange(users_per_row, step=sampling_div[0])
|
239 |
+
rows = np.arange(n_rows, step=sampling_div[1])
|
240 |
+
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
|
241 |
+
|
242 |
+
return uniform_idxs
|
243 |
+
|
244 |
+
def select_by_idx(dataset, idxs):
|
245 |
+
"""
|
246 |
+
Selects a subset of the dataset based on the provided indices.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
dataset (dict): Dataset to trim.
|
250 |
+
idxs (numpy array): Indices of users to select.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
dataset_t (list): Trimmed dataset based on selected indices.
|
254 |
+
"""
|
255 |
+
dataset_t = [] # Trimmed dataset
|
256 |
+
for bs_idx in range(len(dataset)):
|
257 |
+
dataset_t.append({})
|
258 |
+
for key in dataset[bs_idx].keys():
|
259 |
+
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
|
260 |
+
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
|
261 |
+
|
262 |
+
return dataset_t
|
263 |
+
|
264 |
+
#%% Save and Load Utilities
|
265 |
+
def save_var(var, path):
|
266 |
+
"""
|
267 |
+
Saves a variable to a pickle file.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
var (object): Variable to be saved.
|
271 |
+
path (str): Path to save the file.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
None
|
275 |
+
"""
|
276 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
277 |
+
with open(path_full, 'wb') as handle:
|
278 |
+
pickle.dump(var, handle)
|
279 |
+
|
280 |
+
def load_var(path):
|
281 |
+
"""
|
282 |
+
Loads a variable from a pickle file.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
path (str): Path of the file to load.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
var (object): Loaded variable.
|
289 |
+
"""
|
290 |
+
path_full = path if path.endswith('.p') else (path + '.pickle')
|
291 |
+
with open(path_full, 'rb') as handle:
|
292 |
+
var = pickle.load(handle)
|
293 |
+
|
294 |
+
return var
|
295 |
+
|
296 |
+
#%%
|
load_data.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Sun Sep 15 17:19:21 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
import requests
|
9 |
+
import zipfile
|
10 |
+
import os
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
def load_DeepMIMO_data(zip_file_name='dataset.zip', p_file_name='deepmimo_data.p', extract_path='./data'):
|
14 |
+
url = "https://huggingface.co/datasets/sadjadalikhani/lwm/resolve/main/dataset.zip"
|
15 |
+
# Step 1: Download the ZIP file from Hugging Face
|
16 |
+
print(f"Downloading ZIP file from {url}...")
|
17 |
+
response = requests.get(url)
|
18 |
+
with open(zip_file_name, 'wb') as f:
|
19 |
+
f.write(response.content)
|
20 |
+
print(f"Downloaded ZIP file to {zip_file_name}.")
|
21 |
+
|
22 |
+
# Step 2: Unzip the file
|
23 |
+
print(f"Extracting ZIP file to {extract_path}...")
|
24 |
+
with zipfile.ZipFile(zip_file_name, 'r') as zip_ref:
|
25 |
+
zip_ref.extractall(extract_path)
|
26 |
+
print(f"Extracted ZIP file contents to {extract_path}.")
|
27 |
+
|
28 |
+
# Step 3: Load the .p file
|
29 |
+
p_file_path = os.path.join(extract_path, p_file_name)
|
30 |
+
print(f"Loading .p file from {p_file_path}...")
|
31 |
+
with open(p_file_path, 'rb') as f:
|
32 |
+
data = pickle.load(f)
|
33 |
+
|
34 |
+
print("Data successfully loaded from the .p file.")
|
35 |
+
return data
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
lwm_model.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LWM (Large Wireless Model) Implementation and Loading
|
3 |
+
|
4 |
+
@author: salikha4
|
5 |
+
|
6 |
+
This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers
|
7 |
+
for embedding, self-attention, and feed-forward networks. It also provides functionality
|
8 |
+
to load a pre-trained model from a checkpoint.
|
9 |
+
|
10 |
+
Dependencies:
|
11 |
+
- torch
|
12 |
+
- numpy
|
13 |
+
"""
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
ELEMENT_LENGTH = 16
|
21 |
+
D_MODEL = 64
|
22 |
+
MAX_LEN = 129
|
23 |
+
N_LAYERS = 12
|
24 |
+
N_HEADS = 12
|
25 |
+
D_FF = D_MODEL * 4
|
26 |
+
D_K = D_MODEL // N_HEADS
|
27 |
+
D_V = D_MODEL // N_HEADS
|
28 |
+
DROPOUT = 0.1
|
29 |
+
|
30 |
+
class LayerNormalization(nn.Module):
|
31 |
+
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
|
32 |
+
super().__init__()
|
33 |
+
self.eps = eps
|
34 |
+
self.alpha = nn.Parameter(torch.ones(d_model))
|
35 |
+
self.bias = nn.Parameter(torch.zeros(d_model))
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
mean = x.mean(dim=-1, keepdim=True)
|
39 |
+
std = x.std(dim=-1, keepdim=True)
|
40 |
+
return self.alpha * (x - mean) / (std + self.eps) + self.bias
|
41 |
+
|
42 |
+
class Embedding(nn.Module):
|
43 |
+
def __init__(self, element_length, d_model, max_len):
|
44 |
+
super().__init__()
|
45 |
+
self.element_length = element_length
|
46 |
+
self.d_model = d_model
|
47 |
+
self.proj = nn.Linear(element_length, d_model)
|
48 |
+
self.pos_embed = nn.Embedding(max_len, d_model)
|
49 |
+
self.norm = LayerNormalization(d_model)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
seq_len = x.size(1)
|
53 |
+
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
54 |
+
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
|
55 |
+
tok_emb = self.proj(x.float())
|
56 |
+
embedding = tok_emb + self.pos_embed(pos)
|
57 |
+
return self.norm(embedding)
|
58 |
+
|
59 |
+
class ScaledDotProductAttention(nn.Module):
|
60 |
+
def __init__(self):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
def forward(self, Q, K, V):
|
64 |
+
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
|
65 |
+
attn = F.softmax(scores, dim=-1)
|
66 |
+
context = torch.matmul(attn, V)
|
67 |
+
return context, attn
|
68 |
+
|
69 |
+
class MultiHeadAttention(nn.Module):
|
70 |
+
def __init__(self):
|
71 |
+
super().__init__()
|
72 |
+
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
|
73 |
+
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
|
74 |
+
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
|
75 |
+
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
|
76 |
+
self.norm = LayerNormalization(D_MODEL)
|
77 |
+
self.dropout = nn.Dropout(DROPOUT)
|
78 |
+
|
79 |
+
def forward(self, Q, K, V):
|
80 |
+
residual, batch_size = Q, Q.size(0)
|
81 |
+
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
82 |
+
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
83 |
+
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
|
84 |
+
|
85 |
+
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
|
86 |
+
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
|
87 |
+
output = self.linear(output)
|
88 |
+
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
|
89 |
+
|
90 |
+
class PoswiseFeedForwardNet(nn.Module):
|
91 |
+
def __init__(self):
|
92 |
+
super().__init__()
|
93 |
+
self.fc1 = nn.Linear(D_MODEL, D_FF)
|
94 |
+
self.fc2 = nn.Linear(D_FF, D_MODEL)
|
95 |
+
self.dropout = nn.Dropout(DROPOUT)
|
96 |
+
self.norm = LayerNormalization(D_MODEL)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
|
100 |
+
return x + self.dropout(output) #x + self.dropout(output)
|
101 |
+
|
102 |
+
class EncoderLayer(nn.Module):
|
103 |
+
def __init__(self):
|
104 |
+
super().__init__()
|
105 |
+
self.enc_self_attn = MultiHeadAttention()
|
106 |
+
self.pos_ffn = PoswiseFeedForwardNet()
|
107 |
+
self.norm = LayerNormalization(D_MODEL)
|
108 |
+
|
109 |
+
def forward(self, enc_inputs):
|
110 |
+
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
|
111 |
+
attn_outputs = self.norm(attn_outputs)
|
112 |
+
enc_outputs = self.pos_ffn(attn_outputs)
|
113 |
+
return enc_outputs, attn
|
114 |
+
|
115 |
+
class LWM(nn.Module):
|
116 |
+
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
self.embedding = Embedding(element_length, d_model, max_len)
|
120 |
+
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
|
121 |
+
self.linear = nn.Linear(d_model, d_model)
|
122 |
+
self.norm = LayerNormalization(d_model)
|
123 |
+
|
124 |
+
embed_weight = self.embedding.proj.weight
|
125 |
+
d_model, n_dim = embed_weight.size()
|
126 |
+
self.decoder = nn.Linear(d_model, n_dim, bias=False)
|
127 |
+
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
|
128 |
+
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
|
129 |
+
|
130 |
+
def forward(self, input_ids, masked_pos):
|
131 |
+
output = self.embedding(input_ids)
|
132 |
+
|
133 |
+
for layer in self.layers:
|
134 |
+
output, _ = layer(output)
|
135 |
+
|
136 |
+
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
|
137 |
+
h_masked = torch.gather(output, 1, masked_pos)
|
138 |
+
h_masked = self.norm(F.relu(self.linear(h_masked)))
|
139 |
+
logits_lm = self.decoder(h_masked) + self.decoder_bias
|
140 |
+
|
141 |
+
return logits_lm, output
|
142 |
+
|
143 |
+
def load_model(model, model_path, device=None):
|
144 |
+
"""
|
145 |
+
Load a pre-trained LWM model from a checkpoint.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
model_path (str): Path to the checkpoint file.
|
149 |
+
device (torch.device, optional): Device to load the model onto.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
LWM: Loaded model instance.
|
153 |
+
"""
|
154 |
+
if device is None:
|
155 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
156 |
+
|
157 |
+
#model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
|
158 |
+
state_dict = torch.load(model_path, map_location=device)
|
159 |
+
model.load_state_dict(state_dict)
|
160 |
+
model.to(device)
|
161 |
+
return model
|
162 |
+
|
163 |
+
# Usage example
|
164 |
+
if __name__ == "__main__":
|
165 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
166 |
+
model_name = 'model_weights.pth'
|
167 |
+
model_path = f'models/{model_name}'
|
168 |
+
|
169 |
+
model = LWM()
|
170 |
+
|
171 |
+
model = load_model(model, model_path, device)
|
172 |
+
print(f"Model loaded successfully on {device}")
|
173 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters())}")
|
model.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Sun Sep 15 19:55:23 2024
|
4 |
+
|
5 |
+
@author: salikha4
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from inference import *
|
15 |
+
from load_data import load_DeepMIMO_data
|
16 |
+
from input_preprocess import *
|
17 |
+
from lwm_model import LWM, load_model
|
18 |
+
|
19 |
+
|
20 |
+
ELEMENT_LENGTH = 16
|
21 |
+
D_MODEL = 64
|
22 |
+
MAX_LEN = 129
|
23 |
+
N_LAYERS = 12
|
24 |
+
N_HEADS = 12
|
25 |
+
D_FF = D_MODEL * 4
|
26 |
+
D_K = D_MODEL // N_HEADS
|
27 |
+
D_V = D_MODEL // N_HEADS
|
28 |
+
DROPOUT = 0.1
|
29 |
+
|
30 |
+
class LayerNormalization(nn.Module):
|
31 |
+
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
|
32 |
+
super().__init__()
|
33 |
+
self.eps = eps
|
34 |
+
self.alpha = nn.Parameter(torch.ones(d_model))
|
35 |
+
self.bias = nn.Parameter(torch.zeros(d_model))
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
mean = x.mean(dim=-1, keepdim=True)
|
39 |
+
std = x.std(dim=-1, keepdim=True)
|
40 |
+
return self.alpha * (x - mean) / (std + self.eps) + self.bias
|
41 |
+
|
42 |
+
class Embedding(nn.Module):
|
43 |
+
def __init__(self, element_length, d_model, max_len):
|
44 |
+
super().__init__()
|
45 |
+
self.element_length = element_length
|
46 |
+
self.d_model = d_model
|
47 |
+
self.proj = nn.Linear(element_length, d_model)
|
48 |
+
self.pos_embed = nn.Embedding(max_len, d_model)
|
49 |
+
self.norm = LayerNormalization(d_model)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
seq_len = x.size(1)
|
53 |
+
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
54 |
+
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
|
55 |
+
tok_emb = self.proj(x.float())
|
56 |
+
embedding = tok_emb + self.pos_embed(pos)
|
57 |
+
return self.norm(embedding)
|
58 |
+
|
59 |
+
class ScaledDotProductAttention(nn.Module):
|
60 |
+
def __init__(self):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
def forward(self, Q, K, V):
|
64 |
+
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
|
65 |
+
attn = F.softmax(scores, dim=-1)
|
66 |
+
context = torch.matmul(attn, V)
|
67 |
+
return context, attn
|
68 |
+
|
69 |
+
class MultiHeadAttention(nn.Module):
|
70 |
+
def __init__(self):
|
71 |
+
super().__init__()
|
72 |
+
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
|
73 |
+
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
|
74 |
+
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
|
75 |
+
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
|
76 |
+
self.norm = LayerNormalization(D_MODEL)
|
77 |
+
self.dropout = nn.Dropout(DROPOUT)
|
78 |
+
|
79 |
+
def forward(self, Q, K, V):
|
80 |
+
residual, batch_size = Q, Q.size(0)
|
81 |
+
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
82 |
+
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
|
83 |
+
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
|
84 |
+
|
85 |
+
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
|
86 |
+
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
|
87 |
+
output = self.linear(output)
|
88 |
+
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
|
89 |
+
|
90 |
+
class PoswiseFeedForwardNet(nn.Module):
|
91 |
+
def __init__(self):
|
92 |
+
super().__init__()
|
93 |
+
self.fc1 = nn.Linear(D_MODEL, D_FF)
|
94 |
+
self.fc2 = nn.Linear(D_FF, D_MODEL)
|
95 |
+
self.dropout = nn.Dropout(DROPOUT)
|
96 |
+
self.norm = LayerNormalization(D_MODEL)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
|
100 |
+
return x + self.dropout(output) #x + self.dropout(output)
|
101 |
+
|
102 |
+
class EncoderLayer(nn.Module):
|
103 |
+
def __init__(self):
|
104 |
+
super().__init__()
|
105 |
+
self.enc_self_attn = MultiHeadAttention()
|
106 |
+
self.pos_ffn = PoswiseFeedForwardNet()
|
107 |
+
self.norm = LayerNormalization(D_MODEL)
|
108 |
+
|
109 |
+
def forward(self, enc_inputs):
|
110 |
+
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
|
111 |
+
attn_outputs = self.norm(attn_outputs)
|
112 |
+
enc_outputs = self.pos_ffn(attn_outputs)
|
113 |
+
return enc_outputs, attn
|
114 |
+
|
115 |
+
class LWM(torch.nn.Module):
|
116 |
+
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
self.embedding = Embedding(element_length, d_model, max_len)
|
120 |
+
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
|
121 |
+
self.linear = nn.Linear(d_model, d_model)
|
122 |
+
self.norm = LayerNormalization(d_model)
|
123 |
+
|
124 |
+
embed_weight = self.embedding.proj.weight
|
125 |
+
d_model, n_dim = embed_weight.size()
|
126 |
+
self.decoder = nn.Linear(d_model, n_dim, bias=False)
|
127 |
+
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
|
128 |
+
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
|
129 |
+
|
130 |
+
def forward(self, input_ids, masked_pos):
|
131 |
+
output = self.embedding(input_ids)
|
132 |
+
|
133 |
+
for layer in self.layers:
|
134 |
+
output, _ = layer(output)
|
135 |
+
|
136 |
+
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
|
137 |
+
h_masked = torch.gather(output, 1, masked_pos)
|
138 |
+
h_masked = self.norm(F.relu(self.linear(h_masked)))
|
139 |
+
logits_lm = self.decoder(h_masked) + self.decoder_bias
|
140 |
+
|
141 |
+
return logits_lm, output
|
142 |
+
|
143 |
+
@classmethod
|
144 |
+
def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'):
|
145 |
+
# Define model
|
146 |
+
model = cls().to(device)
|
147 |
+
|
148 |
+
# Download the model weights (from a remote or local repository)
|
149 |
+
ckpt_path = f'https://huggingface.co/sadjadalikhani/lwm/resolve/main/{ckpt_name}'
|
150 |
+
|
151 |
+
# Load the model weights
|
152 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url(ckpt_path, map_location=device))
|
153 |
+
print(f"Model loaded successfully from {ckpt_path} to {device}")
|
154 |
+
|
155 |
+
return model
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
# Define the forward pass for the model
|
159 |
+
pass
|
160 |
+
|