Sadjad Alikhani commited on
Commit
85bb7ec
·
verified ·
1 Parent(s): 30399d7

Delete lwm_model.py

Browse files
Files changed (1) hide show
  1. lwm_model.py +0 -173
lwm_model.py DELETED
@@ -1,173 +0,0 @@
1
- """
2
- LWM (Large Wireless Model) Implementation and Loading
3
-
4
- @author: salikha4
5
-
6
- This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers
7
- for embedding, self-attention, and feed-forward networks. It also provides functionality
8
- to load a pre-trained model from a checkpoint.
9
-
10
- Dependencies:
11
- - torch
12
- - numpy
13
- """
14
-
15
- import torch
16
- import torch.nn as nn
17
- import torch.nn.functional as F
18
- import numpy as np
19
-
20
- ELEMENT_LENGTH = 16
21
- D_MODEL = 64
22
- MAX_LEN = 129
23
- N_LAYERS = 12
24
- N_HEADS = 12
25
- D_FF = D_MODEL * 4
26
- D_K = D_MODEL // N_HEADS
27
- D_V = D_MODEL // N_HEADS
28
- DROPOUT = 0.1
29
-
30
- class LayerNormalization(nn.Module):
31
- def __init__(self, d_model: int, eps: float = 1e-6) -> None:
32
- super().__init__()
33
- self.eps = eps
34
- self.alpha = nn.Parameter(torch.ones(d_model))
35
- self.bias = nn.Parameter(torch.zeros(d_model))
36
-
37
- def forward(self, x):
38
- mean = x.mean(dim=-1, keepdim=True)
39
- std = x.std(dim=-1, keepdim=True)
40
- return self.alpha * (x - mean) / (std + self.eps) + self.bias
41
-
42
- class Embedding(nn.Module):
43
- def __init__(self, element_length, d_model, max_len):
44
- super().__init__()
45
- self.element_length = element_length
46
- self.d_model = d_model
47
- self.proj = nn.Linear(element_length, d_model)
48
- self.pos_embed = nn.Embedding(max_len, d_model)
49
- self.norm = LayerNormalization(d_model)
50
-
51
- def forward(self, x):
52
- seq_len = x.size(1)
53
- pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
54
- pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
55
- tok_emb = self.proj(x.float())
56
- embedding = tok_emb + self.pos_embed(pos)
57
- return self.norm(embedding)
58
-
59
- class ScaledDotProductAttention(nn.Module):
60
- def __init__(self):
61
- super().__init__()
62
-
63
- def forward(self, Q, K, V):
64
- scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
65
- attn = F.softmax(scores, dim=-1)
66
- context = torch.matmul(attn, V)
67
- return context, attn
68
-
69
- class MultiHeadAttention(nn.Module):
70
- def __init__(self):
71
- super().__init__()
72
- self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
73
- self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
74
- self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
75
- self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
76
- self.norm = LayerNormalization(D_MODEL)
77
- self.dropout = nn.Dropout(DROPOUT)
78
-
79
- def forward(self, Q, K, V):
80
- residual, batch_size = Q, Q.size(0)
81
- q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
82
- k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
83
- v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
84
-
85
- context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
86
- output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
87
- output = self.linear(output)
88
- return residual + self.dropout(output), attn #residual + self.dropout(output), attn
89
-
90
- class PoswiseFeedForwardNet(nn.Module):
91
- def __init__(self):
92
- super().__init__()
93
- self.fc1 = nn.Linear(D_MODEL, D_FF)
94
- self.fc2 = nn.Linear(D_FF, D_MODEL)
95
- self.dropout = nn.Dropout(DROPOUT)
96
- self.norm = LayerNormalization(D_MODEL)
97
-
98
- def forward(self, x):
99
- output = self.fc2(self.dropout(F.relu(self.fc1(x))))
100
- return x + self.dropout(output) #x + self.dropout(output)
101
-
102
- class EncoderLayer(nn.Module):
103
- def __init__(self):
104
- super().__init__()
105
- self.enc_self_attn = MultiHeadAttention()
106
- self.pos_ffn = PoswiseFeedForwardNet()
107
- self.norm = LayerNormalization(D_MODEL)
108
-
109
- def forward(self, enc_inputs):
110
- attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
111
- attn_outputs = self.norm(attn_outputs)
112
- enc_outputs = self.pos_ffn(attn_outputs)
113
- return enc_outputs, attn
114
-
115
- class LWM(nn.Module):
116
- def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
117
- super().__init__()
118
-
119
- self.embedding = Embedding(element_length, d_model, max_len)
120
- self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
121
- self.linear = nn.Linear(d_model, d_model)
122
- self.norm = LayerNormalization(d_model)
123
-
124
- embed_weight = self.embedding.proj.weight
125
- d_model, n_dim = embed_weight.size()
126
- self.decoder = nn.Linear(d_model, n_dim, bias=False)
127
- self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
128
- self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
129
-
130
- def forward(self, input_ids, masked_pos):
131
- output = self.embedding(input_ids)
132
-
133
- for layer in self.layers:
134
- output, _ = layer(output)
135
-
136
- masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
137
- h_masked = torch.gather(output, 1, masked_pos)
138
- h_masked = self.norm(F.relu(self.linear(h_masked)))
139
- logits_lm = self.decoder(h_masked) + self.decoder_bias
140
-
141
- return logits_lm, output
142
-
143
- def load_model(model, model_path, device=None):
144
- """
145
- Load a pre-trained LWM model from a checkpoint.
146
-
147
- Args:
148
- model_path (str): Path to the checkpoint file.
149
- device (torch.device, optional): Device to load the model onto.
150
-
151
- Returns:
152
- LWM: Loaded model instance.
153
- """
154
- if device is None:
155
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
156
-
157
- #model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
158
- state_dict = torch.load(model_path, map_location=device)
159
- model.load_state_dict(state_dict)
160
- model.to(device)
161
- return model
162
-
163
- # Usage example
164
- if __name__ == "__main__":
165
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
166
- model_name = 'model_weights.pth'
167
- model_path = f'models/{model_name}'
168
-
169
- model = LWM()
170
-
171
- model = load_model(model, model_path, device)
172
- print(f"Model loaded successfully on {device}")
173
- print(f"Model parameters: {sum(p.numel() for p in model.parameters())}")