Sadjad Alikhani commited on
Commit
491d623
·
verified ·
1 Parent(s): 7e07288

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -1
README.md CHANGED
@@ -193,12 +193,14 @@ model = lwm.from_pretrained(device=device)
193
 
194
  ### 9. **Perform Inference**
195
 
 
 
196
  You can now perform inference on the preprocessed data using the LWM model.
197
 
198
  ```python
199
  from inference import lwm_inference, create_raw_dataset
200
  input_types = ['cls_emb', 'channel_emb', 'raw']
201
- selected_input_type = input_types[0]
202
 
203
  if selected_input_type in ['cls_emb', 'channel_emb']:
204
  dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
@@ -206,6 +208,8 @@ else:
206
  dataset = create_raw_dataset(preprocessed_chs, device)
207
  ```
208
 
 
 
209
  ---
210
 
211
  ### 10. **Explore the Interactive Demo**
 
193
 
194
  ### 9. **Perform Inference**
195
 
196
+ Before running the inference, it's important to understand the benefits of the different embedding types. The **CLS embeddings (cls_emb)** provide a highly compressed, holistic view of the entire wireless channel, making them ideal for tasks requiring a general understanding, such as classification or high-level decision-making. On the other hand, **channel embeddings (channel_emb)** capture detailed spatial and frequency information from the wireless channel, making them more suitable for complex tasks like beamforming or channel prediction.
197
+
198
  You can now perform inference on the preprocessed data using the LWM model.
199
 
200
  ```python
201
  from inference import lwm_inference, create_raw_dataset
202
  input_types = ['cls_emb', 'channel_emb', 'raw']
203
+ selected_input_type = input_types[1] # Change the index to select LWM CLS embeddings, LWM channel embeddings, or the original input channels.
204
 
205
  if selected_input_type in ['cls_emb', 'channel_emb']:
206
  dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
 
208
  dataset = create_raw_dataset(preprocessed_chs, device)
209
  ```
210
 
211
+ By selecting either `cls_emb` or `channel_emb`, you leverage the pre-trained model's rich feature extraction capabilities to transform raw channels into highly informative embeddings. If you prefer to work with the original raw data, you can choose the `raw` input type.
212
+
213
  ---
214
 
215
  ### 10. **Explore the Interactive Demo**