Sadjad Alikhani
commited on
Commit
•
40a75ad
1
Parent(s):
6f300b9
Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
|
3 |
**[🚀 Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)**
|
4 |
|
5 |
-
Welcome to
|
6 |
|
7 |
---
|
8 |
|
@@ -10,32 +10,32 @@ Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a p
|
|
10 |
|
11 |
### 1. **Install Conda or Mamba (via Miniforge)**
|
12 |
|
13 |
-
First,
|
14 |
|
15 |
#### **Option A: Install Conda**
|
16 |
|
17 |
-
|
18 |
|
19 |
-
- **Anaconda** includes a
|
20 |
-
- **Miniconda** is a lightweight version that only
|
21 |
|
22 |
#### **Option B: Install Mamba (via Miniforge)**
|
23 |
|
24 |
-
|
25 |
|
26 |
-
- **Miniforge** is a smaller
|
27 |
|
28 |
-
|
29 |
|
30 |
---
|
31 |
|
32 |
### 2. **Create a New Environment**
|
33 |
|
34 |
-
|
35 |
|
36 |
#### **Step 1: Create a new environment**
|
37 |
|
38 |
-
|
39 |
|
40 |
```bash
|
41 |
conda create -n lwm_env
|
@@ -43,7 +43,7 @@ conda create -n lwm_env
|
|
43 |
|
44 |
#### **Step 2: Activate the environment**
|
45 |
|
46 |
-
Activate the environment
|
47 |
|
48 |
```bash
|
49 |
conda activate lwm_env
|
@@ -51,30 +51,37 @@ conda activate lwm_env
|
|
51 |
|
52 |
---
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
# Install CUDA-enabled Pytorch
|
59 |
```bash
|
60 |
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
61 |
```
|
62 |
-
Note: If you have trouble installing the CUDA-enabled Pytorch, make sure the cuda version is compatibnle with your system. It can also because you have tried multiple install scripts. Try a new environment.
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
```bash
|
66 |
conda install python numpy pandas matplotlib tqdm -c conda-forge
|
67 |
```
|
68 |
-
|
|
|
|
|
69 |
```bash
|
70 |
pip install DeepMIMOv3
|
71 |
```
|
72 |
|
73 |
---
|
74 |
|
75 |
-
###
|
76 |
|
77 |
-
The following functions will help you clone specific dataset scenarios:
|
78 |
|
79 |
```python
|
80 |
import subprocess
|
@@ -104,21 +111,15 @@ def clone_dataset_scenario(scenario_name, repo_url, model_repo_dir="./LWM", scen
|
|
104 |
subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True)
|
105 |
|
106 |
print(f"Successfully cloned {scenario_name} into {scenarios_path}.")
|
107 |
-
|
108 |
-
# Function to clone multiple dataset scenarios
|
109 |
-
def clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir):
|
110 |
-
for scenario_name in selected_scenario_names:
|
111 |
-
clone_dataset_scenario(scenario_name, dataset_repo_url, model_repo_dir)
|
112 |
```
|
113 |
|
114 |
---
|
115 |
|
116 |
-
###
|
117 |
|
118 |
-
|
119 |
|
120 |
```bash
|
121 |
-
|
122 |
# Step 1: Clone the model repository (if not already cloned)
|
123 |
model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
|
124 |
model_repo_dir = "./LWM"
|
@@ -130,9 +131,9 @@ if not os.path.exists(model_repo_dir):
|
|
130 |
|
131 |
---
|
132 |
|
133 |
-
###
|
134 |
|
135 |
-
|
136 |
|
137 |
📊 **Dataset Overview**
|
138 |
|
@@ -145,36 +146,25 @@ Before proceeding with tokenization and data processing, the **DeepMIMO** datase
|
|
145 |
| Dataset 4 | 🌉 Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
|
146 |
| Dataset 5 | 🌅 San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
#### **Operational Settings**:
|
151 |
-
- **Antennas at BS**: 32
|
152 |
-
- **Antennas at UEs**: 1
|
153 |
-
- **Subcarriers**: 32
|
154 |
-
- **Paths**: 20
|
155 |
-
|
156 |
```python
|
157 |
-
# Step 2: Clone specific dataset scenario folder(s) inside the "scenarios" folder
|
158 |
dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo
|
159 |
-
scenario_names = np.array([
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
)
|
166 |
-
|
167 |
-
# Choose the desired scenario or secanrios (if you need the combined scenarios as a larger and more diverse scenario.).
|
168 |
-
scenario_idxs = np.array([0,1,2,3,4,5,6])
|
169 |
selected_scenario_names = scenario_names[scenario_idxs]
|
170 |
|
171 |
-
# Clone the requested
|
172 |
clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir)
|
173 |
```
|
174 |
|
175 |
---
|
176 |
|
177 |
-
###
|
|
|
178 |
```bash
|
179 |
if os.path.exists(model_repo_dir):
|
180 |
os.chdir(model_repo_dir)
|
@@ -185,16 +175,20 @@ else:
|
|
185 |
|
186 |
---
|
187 |
|
188 |
-
###
|
|
|
|
|
189 |
|
190 |
```python
|
191 |
from input_preprocess import tokenizer
|
192 |
from lwm_model import lwm
|
193 |
import torch
|
194 |
|
195 |
-
preprocessed_chs = tokenizer(
|
196 |
-
|
197 |
-
|
|
|
|
|
198 |
|
199 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
200 |
print(f"Loading the LWM model on {device}...")
|
@@ -203,11 +197,15 @@ model = lwm.from_pretrained(device=device)
|
|
203 |
|
204 |
---
|
205 |
|
206 |
-
###
|
|
|
|
|
|
|
207 |
```python
|
208 |
from inference import lwm_inference, create_raw_dataset
|
209 |
input_types = ['cls_emb', 'channel_emb', 'raw']
|
210 |
selected_input_type = input_types[0]
|
|
|
211 |
if selected_input_type in ['cls_emb', 'channel_emb']:
|
212 |
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
|
213 |
else:
|
@@ -216,11 +214,12 @@ else:
|
|
216 |
|
217 |
---
|
218 |
|
219 |
-
###
|
|
|
|
|
220 |
|
221 |
-
If you'd like to explore **LWM** interactively, check out the demo hosted on Hugging Face Spaces:
|
222 |
[**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)
|
223 |
|
224 |
---
|
225 |
|
226 |
-
|
|
|
2 |
|
3 |
**[🚀 Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)**
|
4 |
|
5 |
+
Welcome to **LWM** (Large Wireless Model) — a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM.
|
6 |
|
7 |
---
|
8 |
|
|
|
10 |
|
11 |
### 1. **Install Conda or Mamba (via Miniforge)**
|
12 |
|
13 |
+
First, ensure that you have a package manager like **Conda** or **Mamba** installed to manage your Python environments and packages.
|
14 |
|
15 |
#### **Option A: Install Conda**
|
16 |
|
17 |
+
You can install **Conda** via **Anaconda** or **Miniconda**.
|
18 |
|
19 |
+
- **Anaconda** includes a comprehensive scientific package suite. Download it [here](https://www.anaconda.com/products/distribution).
|
20 |
+
- **Miniconda** is a lightweight version that includes only Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html).
|
21 |
|
22 |
#### **Option B: Install Mamba (via Miniforge)**
|
23 |
|
24 |
+
For a faster alternative, use **Mamba** by installing **Miniforge**.
|
25 |
|
26 |
+
- **Miniforge** is a smaller installer that comes with **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest).
|
27 |
|
28 |
+
Once installed, you can use Conda to manage environments.
|
29 |
|
30 |
---
|
31 |
|
32 |
### 2. **Create a New Environment**
|
33 |
|
34 |
+
After installing Conda (https://conda.io/projects/conda/en/latest/user-guide/install/index.html), follow these steps to create a new environment and install the required packages.
|
35 |
|
36 |
#### **Step 1: Create a new environment**
|
37 |
|
38 |
+
Create a new environment named `lwm_env`:
|
39 |
|
40 |
```bash
|
41 |
conda create -n lwm_env
|
|
|
43 |
|
44 |
#### **Step 2: Activate the environment**
|
45 |
|
46 |
+
Activate the environment:
|
47 |
|
48 |
```bash
|
49 |
conda activate lwm_env
|
|
|
51 |
|
52 |
---
|
53 |
|
54 |
+
### 3. **Install Required Packages**
|
55 |
|
56 |
+
Once the environment is activated, install the necessary packages.
|
57 |
+
|
58 |
+
#### **Install CUDA-enabled PyTorch**
|
59 |
+
|
60 |
+
Change the `pytorch-cuda` version based on your system requirements.
|
61 |
|
|
|
62 |
```bash
|
63 |
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
64 |
```
|
|
|
65 |
|
66 |
+
> **Note:** If you encounter issues installing CUDA-enabled PyTorch, verify your CUDA version compatibility. It might also be due to conflicting installation attempts—try a fresh environment.
|
67 |
+
|
68 |
+
#### **Install Other Required Packages via Conda Forge**
|
69 |
+
|
70 |
```bash
|
71 |
conda install python numpy pandas matplotlib tqdm -c conda-forge
|
72 |
```
|
73 |
+
|
74 |
+
#### **Install DeepMIMOv3 with pip**
|
75 |
+
|
76 |
```bash
|
77 |
pip install DeepMIMOv3
|
78 |
```
|
79 |
|
80 |
---
|
81 |
|
82 |
+
### 4. **Clone the Dataset Scenarios**
|
83 |
|
84 |
+
The following functions will help you clone specific dataset scenarios from a repository:
|
85 |
|
86 |
```python
|
87 |
import subprocess
|
|
|
111 |
subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True)
|
112 |
|
113 |
print(f"Successfully cloned {scenario_name} into {scenarios_path}.")
|
|
|
|
|
|
|
|
|
|
|
114 |
```
|
115 |
|
116 |
---
|
117 |
|
118 |
+
### 5. **Clone the Model Repository**
|
119 |
|
120 |
+
Now, clone the **LWM** model repository to your local system.
|
121 |
|
122 |
```bash
|
|
|
123 |
# Step 1: Clone the model repository (if not already cloned)
|
124 |
model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
|
125 |
model_repo_dir = "./LWM"
|
|
|
131 |
|
132 |
---
|
133 |
|
134 |
+
### 6. **Clone the Desired Dataset Scenarios**
|
135 |
|
136 |
+
You can now clone specific scenarios from the DeepMIMO dataset, as detailed in the table below:
|
137 |
|
138 |
📊 **Dataset Overview**
|
139 |
|
|
|
146 |
| Dataset 4 | 🌉 Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
|
147 |
| Dataset 5 | 🌅 San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
|
148 |
|
149 |
+
#### **Clone the Scenarios:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
```python
|
|
|
151 |
dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo
|
152 |
+
scenario_names = np.array([
|
153 |
+
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
154 |
+
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
155 |
+
])
|
156 |
+
|
157 |
+
scenario_idxs = np.array([0, 1, 2, 3, 4, 5]) # Select the scenario indexes
|
|
|
|
|
|
|
|
|
158 |
selected_scenario_names = scenario_names[scenario_idxs]
|
159 |
|
160 |
+
# Clone the requested scenarios
|
161 |
clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir)
|
162 |
```
|
163 |
|
164 |
---
|
165 |
|
166 |
+
### 7. **Change the Working Directory to LWM**
|
167 |
+
|
168 |
```bash
|
169 |
if os.path.exists(model_repo_dir):
|
170 |
os.chdir(model_repo_dir)
|
|
|
175 |
|
176 |
---
|
177 |
|
178 |
+
### 8. **Tokenize and Load the Model**
|
179 |
+
|
180 |
+
Now, tokenize the dataset and load the pre-trained LWM model.
|
181 |
|
182 |
```python
|
183 |
from input_preprocess import tokenizer
|
184 |
from lwm_model import lwm
|
185 |
import torch
|
186 |
|
187 |
+
preprocessed_chs = tokenizer(
|
188 |
+
selected_scenario_names=selected_scenario_names,
|
189 |
+
manual_data=None,
|
190 |
+
gen_raw=True
|
191 |
+
)
|
192 |
|
193 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
194 |
print(f"Loading the LWM model on {device}...")
|
|
|
197 |
|
198 |
---
|
199 |
|
200 |
+
### 9. **Perform Inference**
|
201 |
+
|
202 |
+
You can now perform inference on the preprocessed data using the LWM model.
|
203 |
+
|
204 |
```python
|
205 |
from inference import lwm_inference, create_raw_dataset
|
206 |
input_types = ['cls_emb', 'channel_emb', 'raw']
|
207 |
selected_input_type = input_types[0]
|
208 |
+
|
209 |
if selected_input_type in ['cls_emb', 'channel_emb']:
|
210 |
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
|
211 |
else:
|
|
|
214 |
|
215 |
---
|
216 |
|
217 |
+
### 10. **Explore the Interactive Demo**
|
218 |
+
|
219 |
+
To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces:
|
220 |
|
|
|
221 |
[**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)
|
222 |
|
223 |
---
|
224 |
|
225 |
+
You're now ready to explore the power of **LWM** in wireless communications! Start processing datasets and generate high-quality embeddings to advance your research or applications.
|