Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# π‘ **LWM: Large Wireless Model**
|
2 |
|
3 |
-
**[π Click here to try the Interactive Demo!](https://huggingface.co/spaces/
|
4 |
|
5 |
Welcome to **LWM** (Large Wireless Model) β a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM.
|
6 |
|
@@ -111,7 +111,7 @@ Now, clone the **LWM** model repository to your local system.
|
|
111 |
|
112 |
```bash
|
113 |
# Step 1: Clone the model repository (if not already cloned)
|
114 |
-
model_repo_url = "https://huggingface.co/
|
115 |
model_repo_dir = "./LWM"
|
116 |
|
117 |
if not os.path.exists(model_repo_dir):
|
@@ -138,7 +138,7 @@ You can now clone specific scenarios from the DeepMIMO dataset, as detailed in t
|
|
138 |
|
139 |
#### **Clone the Scenarios:**
|
140 |
```python
|
141 |
-
dataset_repo_url = "https://huggingface.co/datasets/
|
142 |
scenario_names = np.array([
|
143 |
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
144 |
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
@@ -220,7 +220,7 @@ By selecting either `cls_emb` or `channel_emb`, you leverage the pre-trained mod
|
|
220 |
|
221 |
To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces:
|
222 |
|
223 |
-
[**Try the Interactive Demo!**](https://huggingface.co/spaces/
|
224 |
|
225 |
---
|
226 |
|
|
|
1 |
# π‘ **LWM: Large Wireless Model**
|
2 |
|
3 |
+
**[π Click here to try the Interactive Demo!](https://huggingface.co/spaces/wi-lab/lwm-interactive-demo)**
|
4 |
|
5 |
Welcome to **LWM** (Large Wireless Model) β a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM.
|
6 |
|
|
|
111 |
|
112 |
```bash
|
113 |
# Step 1: Clone the model repository (if not already cloned)
|
114 |
+
model_repo_url = "https://huggingface.co/wi-lab/lwm"
|
115 |
model_repo_dir = "./LWM"
|
116 |
|
117 |
if not os.path.exists(model_repo_dir):
|
|
|
138 |
|
139 |
#### **Clone the Scenarios:**
|
140 |
```python
|
141 |
+
dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm" # Base URL for dataset repo
|
142 |
scenario_names = np.array([
|
143 |
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
144 |
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
|
|
220 |
|
221 |
To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces:
|
222 |
|
223 |
+
[**Try the Interactive Demo!**](https://huggingface.co/spaces/wi-lab/lwm-interactive-demo)
|
224 |
|
225 |
---
|
226 |
|