wi-lab commited on
Commit
08a8088
β€’
1 Parent(s): eea7e07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,6 +1,6 @@
1
  # πŸ“‘ **LWM: Large Wireless Model**
2
 
3
- **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)**
4
 
5
  Welcome to **LWM** (Large Wireless Model) β€” a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM.
6
 
@@ -111,7 +111,7 @@ Now, clone the **LWM** model repository to your local system.
111
 
112
  ```bash
113
  # Step 1: Clone the model repository (if not already cloned)
114
- model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
115
  model_repo_dir = "./LWM"
116
 
117
  if not os.path.exists(model_repo_dir):
@@ -138,7 +138,7 @@ You can now clone specific scenarios from the DeepMIMO dataset, as detailed in t
138
 
139
  #### **Clone the Scenarios:**
140
  ```python
141
- dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo
142
  scenario_names = np.array([
143
  "city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
144
  "city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
@@ -220,7 +220,7 @@ By selecting either `cls_emb` or `channel_emb`, you leverage the pre-trained mod
220
 
221
  To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces:
222
 
223
- [**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)
224
 
225
  ---
226
 
 
1
  # πŸ“‘ **LWM: Large Wireless Model**
2
 
3
+ **[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/wi-lab/lwm-interactive-demo)**
4
 
5
  Welcome to **LWM** (Large Wireless Model) β€” a pre-trained model designed for processing and feature extraction from wireless communication datasets, particularly the **DeepMIMO** dataset. This guide provides step-by-step instructions to set up your environment, install the required packages, clone the repository, load data, and perform inference using LWM.
6
 
 
111
 
112
  ```bash
113
  # Step 1: Clone the model repository (if not already cloned)
114
+ model_repo_url = "https://huggingface.co/wi-lab/lwm"
115
  model_repo_dir = "./LWM"
116
 
117
  if not os.path.exists(model_repo_dir):
 
138
 
139
  #### **Clone the Scenarios:**
140
  ```python
141
+ dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm" # Base URL for dataset repo
142
  scenario_names = np.array([
143
  "city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
144
  "city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
 
220
 
221
  To experience **LWM** interactively, visit our demo hosted on Hugging Face Spaces:
222
 
223
+ [**Try the Interactive Demo!**](https://huggingface.co/spaces/wi-lab/lwm-interactive-demo)
224
 
225
  ---
226