|
|
|
"""
|
|
Created on Fri Sep 13 16:13:29 2024
|
|
|
|
This script generates preprocessed data from wireless communication scenarios,
|
|
including token generation, patch creation, and data sampling for machine learning models.
|
|
|
|
@author: salikha4
|
|
"""
|
|
|
|
import numpy as np
|
|
import os
|
|
from tqdm import tqdm
|
|
import time
|
|
import pickle
|
|
import DeepMIMOv3
|
|
|
|
|
|
def scenarios_list():
|
|
"""Returns an array of available scenarios."""
|
|
return np.array([
|
|
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma',
|
|
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
|
|
])
|
|
|
|
|
|
def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True):
|
|
"""
|
|
Generates tokens by preparing and preprocessing the dataset.
|
|
|
|
Args:
|
|
scenario_idxs (list): Indices of the scenarios.
|
|
patch_gen (bool): Whether to generate patches. Defaults to True.
|
|
patch_size (int): Size of each patch. Defaults to 16.
|
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
|
|
gen_raw (bool): Whether to generate raw data. Defaults to False.
|
|
save_data (bool): Whether to save the preprocessed data. Defaults to False.
|
|
|
|
Returns:
|
|
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
|
|
"""
|
|
|
|
if manual_data is not None:
|
|
patches = patch_maker(np.expand_dims(np.array(manual_data), axis=1))
|
|
else:
|
|
|
|
deepmimo_data = [DeepMIMO_data_gen(scenario_name) for scenario_name in selected_scenario_names]
|
|
n_scenarios = len(selected_scenario_names)
|
|
|
|
cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
|
|
|
|
patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
|
|
patches = np.vstack(patches)
|
|
|
|
|
|
patch_size = patches.shape[2]
|
|
n_patches = patches.shape[1]
|
|
n_masks_half = int(0.15 * n_patches / 2)
|
|
|
|
|
|
|
|
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}
|
|
|
|
|
|
preprocessed_data = []
|
|
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
|
|
sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
|
|
preprocessed_data.append(sample)
|
|
|
|
return preprocessed_data
|
|
|
|
|
|
def deepmimo_data_cleaning(deepmimo_data):
|
|
idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
|
|
cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
|
|
return np.array(cleaned_deepmimo_data) * 1e6
|
|
|
|
|
|
def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
|
|
"""
|
|
Creates patches from the dataset based on the scenario.
|
|
|
|
Args:-
|
|
patch_size (int): Size of each patch.
|
|
scenario (str): Selected scenario for data generation.
|
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
|
norm_factor (int): Normalization factor for channels.
|
|
|
|
Returns:
|
|
patch (numpy array): Generated patches.
|
|
"""
|
|
|
|
|
|
|
|
|
|
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
|
|
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag))
|
|
|
|
|
|
n_patches = flat_channels_complex.shape[1] // patch_size
|
|
patch = np.zeros((len(flat_channels_complex), n_patches, patch_size))
|
|
for idx in range(n_patches):
|
|
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
|
|
|
|
return patch
|
|
|
|
|
|
|
|
def DeepMIMO_data_gen(scenario):
|
|
"""
|
|
Generates or loads data for a given scenario.
|
|
|
|
Args:
|
|
scenario (str): Scenario name.
|
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
|
|
save_data (bool): Whether to save generated data.
|
|
|
|
Returns:
|
|
data (dict): Loaded or generated data.
|
|
"""
|
|
import DeepMIMOv3
|
|
|
|
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
|
|
|
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
|
|
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']),
|
|
users_per_row=row_column_users[scenario]['n_per_row'])
|
|
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
|
|
|
|
return data
|
|
|
|
|
|
def get_parameters(scenario):
|
|
|
|
n_ant_bs = 32
|
|
n_ant_ue = 1
|
|
n_subcarriers = 32
|
|
scs = 30e3
|
|
|
|
row_column_users = {
|
|
'city_18_denver': {
|
|
'n_rows': 85,
|
|
'n_per_row': 82
|
|
},
|
|
'city_15_indianapolis': {
|
|
'n_rows': 80,
|
|
'n_per_row': 79
|
|
},
|
|
'city_19_oklahoma': {
|
|
'n_rows': 82,
|
|
'n_per_row': 75
|
|
},
|
|
'city_12_fortworth': {
|
|
'n_rows': 86,
|
|
'n_per_row': 72
|
|
},
|
|
'city_11_santaclara': {
|
|
'n_rows': 47,
|
|
'n_per_row': 114
|
|
},
|
|
'city_7_sandiego': {
|
|
'n_rows': 71,
|
|
'n_per_row': 83
|
|
}}
|
|
|
|
parameters = DeepMIMOv3.default_params()
|
|
parameters['dataset_folder'] = './scenarios'
|
|
parameters['scenario'] = scenario
|
|
|
|
if scenario == 'O1_3p5':
|
|
parameters['active_BS'] = np.array([4])
|
|
elif scenario in ['city_18_denver', 'city_15_indianapolis']:
|
|
parameters['active_BS'] = np.array([3])
|
|
else:
|
|
parameters['active_BS'] = np.array([1])
|
|
|
|
if scenario == 'Boston5G_3p5':
|
|
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
|
|
row_column_users[scenario]['n_rows'][1])
|
|
else:
|
|
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
|
|
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1])
|
|
parameters['bs_antenna']['rotation'] = np.array([0,0,-135])
|
|
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
|
|
parameters['enable_BS2BS'] = False
|
|
parameters['OFDM']['subcarriers'] = n_subcarriers
|
|
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
|
|
|
|
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
|
|
parameters['num_paths'] = 20
|
|
|
|
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers
|
|
|
|
|
|
|
|
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
|
|
"""
|
|
Generates a sample for each user, including masking and tokenizing.
|
|
|
|
Args:
|
|
user_idx (int): Index of the user.
|
|
patch (numpy array): Patches data.
|
|
word2id (dict): Dictionary for special tokens.
|
|
n_patches (int): Number of patches.
|
|
n_masks (int): Number of masks.
|
|
patch_size (int): Size of each patch.
|
|
gen_raw (bool): Whether to generate raw tokens.
|
|
|
|
Returns:
|
|
sample (list): Generated sample for the user.
|
|
"""
|
|
|
|
tokens = patch[user_idx]
|
|
input_ids = np.vstack((word2id['[CLS]'], tokens))
|
|
|
|
real_tokens_size = int(n_patches / 2)
|
|
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
|
|
masks_pos_imag = masks_pos_real + real_tokens_size
|
|
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
|
|
|
|
masked_tokens = []
|
|
for pos in masked_pos:
|
|
original_masked_tokens = input_ids[pos].copy()
|
|
masked_tokens.append(original_masked_tokens)
|
|
if not gen_raw:
|
|
rnd_num = np.random.rand()
|
|
if rnd_num < 0.1:
|
|
input_ids[pos] = np.random.rand(patch_size)
|
|
elif rnd_num < 0.9:
|
|
input_ids[pos] = word2id['[MASK]']
|
|
|
|
return [input_ids, masked_tokens, masked_pos]
|
|
|
|
|
|
|
|
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
|
|
"""
|
|
Performs uniform sampling on the dataset.
|
|
|
|
Args:
|
|
dataset (dict): DeepMIMO dataset.
|
|
sampling_div (list): Step sizes along [x, y] dimensions.
|
|
n_rows (int): Number of rows for user selection.
|
|
users_per_row (int): Number of users per row.
|
|
|
|
Returns:
|
|
uniform_idxs (numpy array): Indices of the selected samples.
|
|
"""
|
|
cols = np.arange(users_per_row, step=sampling_div[0])
|
|
rows = np.arange(n_rows, step=sampling_div[1])
|
|
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
|
|
|
|
return uniform_idxs
|
|
|
|
def select_by_idx(dataset, idxs):
|
|
"""
|
|
Selects a subset of the dataset based on the provided indices.
|
|
|
|
Args:
|
|
dataset (dict): Dataset to trim.
|
|
idxs (numpy array): Indices of users to select.
|
|
|
|
Returns:
|
|
dataset_t (list): Trimmed dataset based on selected indices.
|
|
"""
|
|
dataset_t = []
|
|
for bs_idx in range(len(dataset)):
|
|
dataset_t.append({})
|
|
for key in dataset[bs_idx].keys():
|
|
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
|
|
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
|
|
|
|
return dataset_t
|
|
|
|
|
|
def save_var(var, path):
|
|
"""
|
|
Saves a variable to a pickle file.
|
|
|
|
Args:
|
|
var (object): Variable to be saved.
|
|
path (str): Path to save the file.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
path_full = path if path.endswith('.p') else (path + '.pickle')
|
|
with open(path_full, 'wb') as handle:
|
|
pickle.dump(var, handle)
|
|
|
|
def load_var(path):
|
|
"""
|
|
Loads a variable from a pickle file.
|
|
|
|
Args:
|
|
path (str): Path of the file to load.
|
|
|
|
Returns:
|
|
var (object): Loaded variable.
|
|
"""
|
|
path_full = path if path.endswith('.p') else (path + '.pickle')
|
|
with open(path_full, 'rb') as handle:
|
|
var = pickle.load(handle)
|
|
|
|
return var
|
|
|
|
|
|
|
|
def label_gen(task, data, scenario, n_beams=64):
|
|
|
|
idxs = np.where(data['user']['LoS'] != -1)[0]
|
|
|
|
if task == 'LoS/NLoS Classification':
|
|
label = data['user']['LoS'][idxs]
|
|
elif task == 'Beam Prediction':
|
|
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
|
|
n_users = len(data['user']['channel'])
|
|
n_subbands = 1
|
|
fov = 120
|
|
|
|
|
|
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2)
|
|
|
|
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'],
|
|
phi=azi*np.pi/180,
|
|
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze()
|
|
for azi in beam_angles])
|
|
|
|
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float)
|
|
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'):
|
|
if data['user']['LoS'][ue_idx] == -1:
|
|
full_dbm[:,:,ue_idx] = np.nan
|
|
else:
|
|
chs = F1 @ data['user']['channel'][ue_idx]
|
|
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1))
|
|
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1)
|
|
|
|
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0)
|
|
best_beams = best_beams.astype(float)
|
|
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan
|
|
|
|
|
|
label = best_beams[idxs]
|
|
|
|
return label.astype(int)
|
|
|
|
def steering_vec(array, phi=0, theta=0, kd=np.pi):
|
|
|
|
|
|
idxs = DeepMIMOv3.ant_indices(array)
|
|
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd)
|
|
return resp / np.linalg.norm(resp)
|
|
|
|
|
|
def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64):
|
|
labels = []
|
|
for scenario_idx in scenario_idxs:
|
|
scenario_name = scenarios_list()[scenario_idx]
|
|
|
|
data = deepmimo_data[scenario_idx]
|
|
labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams))
|
|
|
|
preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))]
|
|
|
|
return preprocessed_chs |