|
|
|
""" |
|
Created on Fri Sep 13 16:13:29 2024 |
|
|
|
This script generates preprocessed data from wireless communication scenarios, |
|
including token generation, patch creation, and data sampling for machine learning models. |
|
|
|
@author: salikha4 |
|
""" |
|
|
|
import numpy as np |
|
import os |
|
from tqdm import tqdm |
|
import time |
|
import pickle |
|
import DeepMIMOv3 |
|
|
|
|
|
def scenarios_list(): |
|
"""Returns an array of available scenarios.""" |
|
return np.array([ |
|
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma', |
|
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego' |
|
]) |
|
|
|
|
|
def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True): |
|
""" |
|
Generates tokens by preparing and preprocessing the dataset. |
|
|
|
Args: |
|
scenario_idxs (list): Indices of the scenarios. |
|
patch_gen (bool): Whether to generate patches. Defaults to True. |
|
patch_size (int): Size of each patch. Defaults to 16. |
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False. |
|
gen_raw (bool): Whether to generate raw data. Defaults to False. |
|
save_data (bool): Whether to save the preprocessed data. Defaults to False. |
|
|
|
Returns: |
|
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions. |
|
""" |
|
|
|
if manual_data is not None: |
|
patches = patch_maker(np.expand_dims(np.array(manual_data), axis=1)) |
|
|
|
else: |
|
|
|
deepmimo_data = [DeepMIMO_data_gen(scenario_name) for scenario_name in selected_scenario_names] |
|
n_scenarios = len(selected_scenario_names) |
|
|
|
cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)] |
|
|
|
patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)] |
|
patches = np.vstack(patches) |
|
|
|
|
|
patch_size = patches.shape[2] |
|
n_patches = patches.shape[1] |
|
n_masks_half = int(0.15 * n_patches / 2) |
|
|
|
|
|
|
|
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))} |
|
|
|
|
|
preprocessed_data = [] |
|
for user_idx in tqdm(range(len(patches)), desc="Processing items"): |
|
sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw) |
|
preprocessed_data.append(sample) |
|
|
|
return preprocessed_data |
|
|
|
|
|
def deepmimo_data_cleaning(deepmimo_data): |
|
idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0] |
|
cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs] |
|
return np.array(cleaned_deepmimo_data) * 1e6 |
|
|
|
|
|
def patch_maker(original_ch, patch_size=16, norm_factor=1e6): |
|
""" |
|
Creates patches from the dataset based on the scenario. |
|
|
|
Args:- |
|
patch_size (int): Size of each patch. |
|
scenario (str): Selected scenario for data generation. |
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. |
|
norm_factor (int): Normalization factor for channels. |
|
|
|
Returns: |
|
patch (numpy array): Generated patches. |
|
""" |
|
|
|
|
|
|
|
|
|
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle) |
|
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) |
|
|
|
|
|
n_patches = flat_channels_complex.shape[1] // patch_size |
|
patch = np.zeros((len(flat_channels_complex), n_patches, patch_size)) |
|
for idx in range(n_patches): |
|
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size] |
|
|
|
return patch |
|
|
|
|
|
|
|
def DeepMIMO_data_gen(scenario): |
|
""" |
|
Generates or loads data for a given scenario. |
|
|
|
Args: |
|
scenario (str): Scenario name. |
|
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. |
|
save_data (bool): Whether to save generated data. |
|
|
|
Returns: |
|
data (dict): Loaded or generated data. |
|
""" |
|
import DeepMIMOv3 |
|
|
|
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario) |
|
|
|
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters) |
|
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']), |
|
users_per_row=row_column_users[scenario]['n_per_row']) |
|
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0] |
|
|
|
return data |
|
|
|
|
|
def get_parameters(scenario): |
|
|
|
n_ant_bs = 32 |
|
n_ant_ue = 1 |
|
n_subcarriers = 32 |
|
scs = 30e3 |
|
|
|
row_column_users = { |
|
'city_18_denver': { |
|
'n_rows': 85, |
|
'n_per_row': 82 |
|
}, |
|
'city_15_indianapolis': { |
|
'n_rows': 80, |
|
'n_per_row': 79 |
|
}, |
|
'city_19_oklahoma': { |
|
'n_rows': 82, |
|
'n_per_row': 75 |
|
}, |
|
'city_12_fortworth': { |
|
'n_rows': 86, |
|
'n_per_row': 72 |
|
}, |
|
'city_11_santaclara': { |
|
'n_rows': 47, |
|
'n_per_row': 114 |
|
}, |
|
'city_7_sandiego': { |
|
'n_rows': 71, |
|
'n_per_row': 83 |
|
}} |
|
|
|
parameters = DeepMIMOv3.default_params() |
|
parameters['dataset_folder'] = './scenarios' |
|
parameters['scenario'] = scenario |
|
|
|
if scenario == 'O1_3p5': |
|
parameters['active_BS'] = np.array([4]) |
|
elif scenario in ['city_18_denver', 'city_15_indianapolis']: |
|
parameters['active_BS'] = np.array([3]) |
|
else: |
|
parameters['active_BS'] = np.array([1]) |
|
|
|
if scenario == 'Boston5G_3p5': |
|
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0], |
|
row_column_users[scenario]['n_rows'][1]) |
|
else: |
|
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows']) |
|
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) |
|
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) |
|
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1]) |
|
parameters['enable_BS2BS'] = False |
|
parameters['OFDM']['subcarriers'] = n_subcarriers |
|
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers) |
|
|
|
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9 |
|
parameters['num_paths'] = 20 |
|
|
|
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers |
|
|
|
|
|
|
|
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False): |
|
""" |
|
Generates a sample for each user, including masking and tokenizing. |
|
|
|
Args: |
|
user_idx (int): Index of the user. |
|
patch (numpy array): Patches data. |
|
word2id (dict): Dictionary for special tokens. |
|
n_patches (int): Number of patches. |
|
n_masks (int): Number of masks. |
|
patch_size (int): Size of each patch. |
|
gen_raw (bool): Whether to generate raw tokens. |
|
|
|
Returns: |
|
sample (list): Generated sample for the user. |
|
""" |
|
|
|
tokens = patch[user_idx] |
|
input_ids = np.vstack((word2id['[CLS]'], tokens)) |
|
|
|
real_tokens_size = int(n_patches / 2) |
|
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False) |
|
masks_pos_imag = masks_pos_real + real_tokens_size |
|
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1 |
|
|
|
masked_tokens = [] |
|
for pos in masked_pos: |
|
original_masked_tokens = input_ids[pos].copy() |
|
masked_tokens.append(original_masked_tokens) |
|
if not gen_raw: |
|
rnd_num = np.random.rand() |
|
if rnd_num < 0.1: |
|
input_ids[pos] = np.random.rand(patch_size) |
|
elif rnd_num < 0.9: |
|
input_ids[pos] = word2id['[MASK]'] |
|
|
|
return [input_ids, masked_tokens, masked_pos] |
|
|
|
|
|
|
|
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row): |
|
""" |
|
Performs uniform sampling on the dataset. |
|
|
|
Args: |
|
dataset (dict): DeepMIMO dataset. |
|
sampling_div (list): Step sizes along [x, y] dimensions. |
|
n_rows (int): Number of rows for user selection. |
|
users_per_row (int): Number of users per row. |
|
|
|
Returns: |
|
uniform_idxs (numpy array): Indices of the selected samples. |
|
""" |
|
cols = np.arange(users_per_row, step=sampling_div[0]) |
|
rows = np.arange(n_rows, step=sampling_div[1]) |
|
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols]) |
|
|
|
return uniform_idxs |
|
|
|
def select_by_idx(dataset, idxs): |
|
""" |
|
Selects a subset of the dataset based on the provided indices. |
|
|
|
Args: |
|
dataset (dict): Dataset to trim. |
|
idxs (numpy array): Indices of users to select. |
|
|
|
Returns: |
|
dataset_t (list): Trimmed dataset based on selected indices. |
|
""" |
|
dataset_t = [] |
|
for bs_idx in range(len(dataset)): |
|
dataset_t.append({}) |
|
for key in dataset[bs_idx].keys(): |
|
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location'] |
|
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']} |
|
|
|
return dataset_t |
|
|
|
|
|
def save_var(var, path): |
|
""" |
|
Saves a variable to a pickle file. |
|
|
|
Args: |
|
var (object): Variable to be saved. |
|
path (str): Path to save the file. |
|
|
|
Returns: |
|
None |
|
""" |
|
path_full = path if path.endswith('.p') else (path + '.pickle') |
|
with open(path_full, 'wb') as handle: |
|
pickle.dump(var, handle) |
|
|
|
def load_var(path): |
|
""" |
|
Loads a variable from a pickle file. |
|
|
|
Args: |
|
path (str): Path of the file to load. |
|
|
|
Returns: |
|
var (object): Loaded variable. |
|
""" |
|
path_full = path if path.endswith('.p') else (path + '.pickle') |
|
with open(path_full, 'rb') as handle: |
|
var = pickle.load(handle) |
|
|
|
return var |
|
|
|
|
|
|
|
def label_gen(task, data, scenario, n_beams=64): |
|
|
|
idxs = np.where(data['user']['LoS'] != -1)[0] |
|
|
|
if task == 'LoS/NLoS Classification': |
|
label = data['user']['LoS'][idxs] |
|
elif task == 'Beam Prediction': |
|
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario) |
|
n_users = len(data['user']['channel']) |
|
n_subbands = 1 |
|
fov = 120 |
|
|
|
|
|
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2) |
|
|
|
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'], |
|
phi=azi*np.pi/180, |
|
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze() |
|
for azi in beam_angles]) |
|
|
|
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float) |
|
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'): |
|
if data['user']['LoS'][ue_idx] == -1: |
|
full_dbm[:,:,ue_idx] = np.nan |
|
else: |
|
chs = F1 @ data['user']['channel'][ue_idx] |
|
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1)) |
|
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1) |
|
|
|
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0) |
|
best_beams = best_beams.astype(float) |
|
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan |
|
|
|
|
|
label = best_beams[idxs] |
|
|
|
return label.astype(int) |
|
|
|
def steering_vec(array, phi=0, theta=0, kd=np.pi): |
|
|
|
|
|
idxs = DeepMIMOv3.ant_indices(array) |
|
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd) |
|
return resp / np.linalg.norm(resp) |
|
|
|
|
|
def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64): |
|
labels = [] |
|
for scenario_idx in scenario_idxs: |
|
scenario_name = scenarios_list()[scenario_idx] |
|
|
|
data = deepmimo_data[scenario_idx] |
|
labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams)) |
|
|
|
preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))] |
|
|
|
return preprocessed_chs |