|
|
|
""" |
|
Created on Sun Sep 15 18:27:17 2024 |
|
|
|
@author: salikha4 |
|
""" |
|
|
|
import os |
|
import csv |
|
import json |
|
import shutil |
|
import random |
|
import argparse |
|
from datetime import datetime |
|
import pandas as pd |
|
import time |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, DataLoader, TensorDataset |
|
from torch.optim import Adam |
|
import numpy as np |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
def set_random_seed(seed=42): |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
set_random_seed() |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else "cpu") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
def lwm_inference(preprocessed_chs, input_type, lwm_model): |
|
|
|
dataset = prepare_for_LWM(preprocessed_chs, device) |
|
|
|
|
|
lwm_loss, embedding_data = evaluate(lwm_model, dataset) |
|
print(f'LWM loss: {lwm_loss:.4f}') |
|
|
|
if input_type == 'cls_emb': |
|
embedding_data = embedding_data[:, 0] |
|
elif input_type == 'channel_emb': |
|
embedding_data = embedding_data[:, 1:] |
|
|
|
dataset = embedding_data.float() |
|
print(dataset[0][:4]) |
|
return dataset |
|
|
|
def prepare_for_LWM(data, device, batch_size=64, shuffle=False): |
|
|
|
input_ids, masked_tokens, masked_pos = zip(*data) |
|
|
|
input_ids_tensor = torch.tensor(input_ids, device=device).float() |
|
masked_tokens_tensor = torch.tensor(masked_tokens, device=device).float() |
|
masked_pos_tensor = torch.tensor(masked_pos, device=device).long() |
|
|
|
dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor) |
|
|
|
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle) |
|
|
|
def evaluate(model, dataloader): |
|
|
|
model.eval() |
|
running_loss = 0.0 |
|
outputs = [] |
|
criterionMCM = nn.MSELoss() |
|
|
|
with torch.no_grad(): |
|
for batch in dataloader: |
|
input_ids = batch[0] |
|
masked_tokens = batch[1] |
|
masked_pos = batch[2] |
|
|
|
logits_lm, output = model(input_ids, masked_pos) |
|
|
|
output_batch_preproc = output |
|
outputs.append(output_batch_preproc) |
|
|
|
loss_lm = criterionMCM(logits_lm, masked_tokens) |
|
loss = loss_lm / torch.var(masked_tokens) |
|
running_loss += loss.item() |
|
|
|
average_loss = running_loss / len(dataloader) |
|
output_total = torch.cat(outputs, dim=0) |
|
|
|
return average_loss, output_total |
|
|
|
def create_raw_dataset(data, device): |
|
"""Create a dataset for raw channel data.""" |
|
input_ids, _, _ = zip(*data) |
|
input_data = torch.tensor(input_ids, device=device).float()[:, 1:] |
|
return input_data.float() |
|
|