File size: 13,137 Bytes
48ca955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bd707
48ca955
fcd80b2
 
 
18582c8
fcd80b2
 
 
 
 
 
 
 
 
48ca955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcd80b2
 
48ca955
84e536e
 
48ca955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da21525
48ca955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573514a
 
48ca955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737ab45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 13 16:13:29 2024

This script generates preprocessed data from wireless communication scenarios, 
including token generation, patch creation, and data sampling for machine learning models.

@author: salikha4
"""

import numpy as np
import os
from tqdm import tqdm
import time
import pickle
import DeepMIMOv3
import torch

def set_random_seed(seed=42):
    torch.manual_seed(seed)
    np.random.seed(seed)
    #random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    # Ensures deterministic behavior
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

# Apply random seed
set_random_seed()

#%% Scenarios List
def scenarios_list():
    """Returns an array of available scenarios."""
    return np.array([
        'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma', 
        'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
    ])

#%% Token Generation
def tokenizer(selected_scenario_names=None, manual_data=None, gen_raw=True):
    """
    Generates tokens by preparing and preprocessing the dataset.

    Args:
        scenario_idxs (list): Indices of the scenarios.
        patch_gen (bool): Whether to generate patches. Defaults to True.
        patch_size (int): Size of each patch. Defaults to 16.
        gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
        gen_raw (bool): Whether to generate raw data. Defaults to False.
        save_data (bool): Whether to save the preprocessed data. Defaults to False.
    
    Returns:
        preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
    """

    set_random_seed()
    
    if manual_data is not None:
        patches = patch_maker(np.expand_dims(np.array(manual_data), axis=1))
        #patches = patch_maker(torch.tensor(manual_data, dtype=torch.complex64).unsqueeze(1))
    else:
        # Patch generation or loading
        deepmimo_data = [DeepMIMO_data_gen(scenario_name) for scenario_name in selected_scenario_names]
        n_scenarios = len(selected_scenario_names)
        
        cleaned_deepmimo_data = [deepmimo_data_cleaning(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
        
        patches = [patch_maker(cleaned_deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
        patches = np.vstack(patches)

    # Define dimensions
    patch_size = patches.shape[2]
    n_patches = patches.shape[1]
    n_masks_half = int(0.15 * n_patches / 2)
    # sequence_length = n_patches + 1
    # element_length = patch_size
    
    word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}

    # Generate preprocessed channels
    preprocessed_data = []
    for user_idx in tqdm(range(len(patches)), desc="Processing items"):
        sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
        preprocessed_data.append(sample)
            
    return preprocessed_data

#%%
def deepmimo_data_cleaning(deepmimo_data):
    idxs = np.where(deepmimo_data['user']['LoS'] != -1)[0]
    cleaned_deepmimo_data = deepmimo_data['user']['channel'][idxs]
    return np.array(cleaned_deepmimo_data) * 1e6

#%% Patch Creation
def patch_maker(original_ch, patch_size=16, norm_factor=1e6):
    """
    Creates patches from the dataset based on the scenario.

    Args:-
        patch_size (int): Size of each patch.
        scenario (str): Selected scenario for data generation.
        gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
        norm_factor (int): Normalization factor for channels.

    Returns:
        patch (numpy array): Generated patches.
    """
    # idxs = np.where(data['user']['LoS'] != -1)[0]
    
    # # Reshaping and normalizing channels
    # original_ch = data['user']['channel'][idxs]
    flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
    flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag))
    
    # Create patches
    n_patches = flat_channels_complex.shape[1] // patch_size
    patch = np.zeros((len(flat_channels_complex), n_patches, patch_size))
    for idx in range(n_patches):
        patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
    
    return patch


#%% Data Generation for Scenario Areas
def DeepMIMO_data_gen(scenario):
    """
    Generates or loads data for a given scenario.

    Args:
        scenario (str): Scenario name.
        gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
        save_data (bool): Whether to save generated data.
    
    Returns:
        data (dict): Loaded or generated data.
    """
    import DeepMIMOv3
    
    parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
    
    deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
    uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']), 
                                    users_per_row=row_column_users[scenario]['n_per_row'])
    data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
        
    return data

#%%%
def get_parameters(scenario):
    
    n_ant_bs = 32 #32
    n_ant_ue = 1
    n_subcarriers = 32 #32
    scs = 30e3
        
    row_column_users = {
    'city_18_denver': {
        'n_rows': 85,
        'n_per_row': 82
    },
    'city_15_indianapolis': {
        'n_rows': 80,
        'n_per_row': 79
    },
    'city_19_oklahoma': {
        'n_rows': 82,
        'n_per_row': 75
    },
    'city_12_fortworth': {
        'n_rows': 86,
        'n_per_row': 72
    },
    'city_11_santaclara': {
        'n_rows': 47,
        'n_per_row': 114
    },
    'city_7_sandiego': {
        'n_rows': 71,
        'n_per_row': 83
    }}
    
    parameters = DeepMIMOv3.default_params()
    parameters['dataset_folder'] = './scenarios'
    parameters['scenario'] = scenario
    
    if scenario == 'O1_3p5':
        parameters['active_BS'] = np.array([4])
    elif scenario in ['city_18_denver', 'city_15_indianapolis']:
        parameters['active_BS'] = np.array([3])
    else:
        parameters['active_BS'] = np.array([1])
        
    if scenario == 'Boston5G_3p5':
        parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
                                            row_column_users[scenario]['n_rows'][1])
    else:
        parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
    parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical 
    parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
    parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
    parameters['enable_BS2BS'] = False
    parameters['OFDM']['subcarriers'] = n_subcarriers
    parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
    
    parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
    parameters['num_paths'] = 20
    
    return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers


#%% Sample Generation
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
    """
    Generates a sample for each user, including masking and tokenizing.

    Args:
        user_idx (int): Index of the user.
        patch (numpy array): Patches data.
        word2id (dict): Dictionary for special tokens.
        n_patches (int): Number of patches.
        n_masks (int): Number of masks.
        patch_size (int): Size of each patch.
        gen_raw (bool): Whether to generate raw tokens.

    Returns:
        sample (list): Generated sample for the user.
    """
    set_random_seed()
    
    tokens = patch[user_idx]
    input_ids = np.vstack((word2id['[CLS]'], tokens))
    
    real_tokens_size = int(n_patches / 2)
    masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
    masks_pos_imag = masks_pos_real + real_tokens_size
    masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
    
    masked_tokens = []
    for pos in masked_pos:
        original_masked_tokens = input_ids[pos].copy()
        masked_tokens.append(original_masked_tokens)
        if not gen_raw:
            rnd_num = np.random.rand()
            if rnd_num < 0.1:
                input_ids[pos] = np.random.rand(patch_size)
            elif rnd_num < 0.9:
                input_ids[pos] = word2id['[MASK]']
    #if user_idx == 0:            
    #    print(f'masked_pos: {masked_pos}')
    return [input_ids, masked_tokens, masked_pos]


#%% Sampling and Data Selection
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
    """
    Performs uniform sampling on the dataset.

    Args:
        dataset (dict): DeepMIMO dataset.
        sampling_div (list): Step sizes along [x, y] dimensions.
        n_rows (int): Number of rows for user selection.
        users_per_row (int): Number of users per row.

    Returns:
        uniform_idxs (numpy array): Indices of the selected samples.
    """
    cols = np.arange(users_per_row, step=sampling_div[0])
    rows = np.arange(n_rows, step=sampling_div[1])
    uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
    
    return uniform_idxs

def select_by_idx(dataset, idxs):
    """
    Selects a subset of the dataset based on the provided indices.

    Args:
        dataset (dict): Dataset to trim.
        idxs (numpy array): Indices of users to select.

    Returns:
        dataset_t (list): Trimmed dataset based on selected indices.
    """
    dataset_t = []  # Trimmed dataset
    for bs_idx in range(len(dataset)):
        dataset_t.append({})
        for key in dataset[bs_idx].keys():
            dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
            dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
    
    return dataset_t

#%% Save and Load Utilities
def save_var(var, path):
    """
    Saves a variable to a pickle file.

    Args:
        var (object): Variable to be saved.
        path (str): Path to save the file.

    Returns:
        None
    """
    path_full = path if path.endswith('.p') else (path + '.pickle')    
    with open(path_full, 'wb') as handle:
        pickle.dump(var, handle)

def load_var(path):
    """
    Loads a variable from a pickle file.

    Args:
        path (str): Path of the file to load.

    Returns:
        var (object): Loaded variable.
    """
    path_full = path if path.endswith('.p') else (path + '.pickle')
    with open(path_full, 'rb') as handle:
        var = pickle.load(handle)
    
    return var

#%%

def label_gen(task, data, scenario, n_beams=64):
    
    idxs = np.where(data['user']['LoS'] != -1)[0]
            
    if task == 'LoS/NLoS Classification':
        label = data['user']['LoS'][idxs]
    elif task == 'Beam Prediction':
        parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
        n_users = len(data['user']['channel'])
        n_subbands = 1
        fov = 120

        # Setup Beamformers
        beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2)

        F1 = np.array([steering_vec(parameters['bs_antenna']['shape'], 
                                    phi=azi*np.pi/180, 
                                    kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze()
                       for azi in beam_angles])

        full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float)
        for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'):
            if data['user']['LoS'][ue_idx] == -1:
                full_dbm[:,:,ue_idx] = np.nan
            else:
                chs = F1 @ data['user']['channel'][ue_idx]
                full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1))
                full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1)

        best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0)
        best_beams = best_beams.astype(float)
        best_beams[np.isnan(full_dbm[0,0,:])] = np.nan
        # max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0) 
    
        label = best_beams[idxs]
        
    return label.astype(int)

def steering_vec(array, phi=0, theta=0, kd=np.pi):
    # phi = azimuth
    # theta = elevation
    idxs = DeepMIMOv3.ant_indices(array)
    resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd)
    return resp / np.linalg.norm(resp)


def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64):
    labels = []
    for scenario_idx in scenario_idxs:
        scenario_name = scenarios_list()[scenario_idx]
        # data = DeepMIMO_data_gen(scenario_name)
        data = deepmimo_data[scenario_idx]
        labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams))
    
    preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))]
    
    return preprocessed_chs