File size: 4,895 Bytes
23274c4 c0addc2 23274c4 c79de44 23274c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1
class LayerNormalization(nn.Module):
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(d_model))
self.bias = nn.Parameter(torch.zeros(d_model))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class Embedding(nn.Module):
def __init__(self, element_length, d_model, max_len):
super().__init__()
self.element_length = element_length
self.d_model = d_model
self.proj = nn.Linear(element_length, d_model)
self.pos_embed = nn.Embedding(max_len, d_model)
self.norm = LayerNormalization(d_model)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
tok_emb = self.proj(x.float())
embedding = tok_emb + self.pos_embed(pos)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Q, K, V):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
attn = F.softmax(scores, dim=-1)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super().__init__()
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
self.norm = LayerNormalization(D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
def forward(self, Q, K, V):
residual, batch_size = Q, Q.size(0)
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
output = self.linear(output)
return residual + self.dropout(output), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(D_MODEL, D_FF)
self.fc2 = nn.Linear(D_FF, D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
self.norm = LayerNormalization(D_MODEL)
def forward(self, x):
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
return x + self.dropout(output)
class EncoderLayer(nn.Module):
def __init__(self):
super().__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
self.norm = LayerNormalization(D_MODEL)
def forward(self, enc_inputs):
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
attn_outputs = self.norm(attn_outputs)
enc_outputs = self.pos_ffn(attn_outputs)
return enc_outputs, attn
class lwm(torch.nn.Module):
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
super().__init__()
self.embedding = Embedding(element_length, d_model, max_len)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
self.linear = nn.Linear(d_model, d_model)
self.norm = LayerNormalization(d_model)
embed_weight = self.embedding.proj.weight
d_model, n_dim = embed_weight.size()
self.decoder = nn.Linear(d_model, n_dim, bias=False)
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
@classmethod
def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None):
model = cls().to(device)
ckpt_path = ckpt_name
model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"Model loaded successfully from {ckpt_path} to {device}")
return model
def forward(self, input_ids, masked_pos):
output = self.embedding(input_ids)
for layer in self.layers:
output, _ = layer(output)
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
h_masked = torch.gather(output, 1, masked_pos)
h_masked = self.norm(F.relu(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias
return logits_lm, output
|