File size: 5,471 Bytes
23274c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random

# Set manual seed for reproducibility
def set_random_seed(seed=42):
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    # Ensures deterministic behavior
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

# Call the seed function
set_random_seed()

ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1

class LayerNormalization(nn.Module):
    def __init__(self, d_model: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(d_model))
        self.bias = nn.Parameter(torch.zeros(d_model))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        std = x.std(dim=-1, keepdim=True)
        return self.alpha * (x - mean) / (std + self.eps) + self.bias

class Embedding(nn.Module):
    def __init__(self, element_length, d_model, max_len):
        super().__init__()
        self.element_length = element_length
        self.d_model = d_model
        self.proj = nn.Linear(element_length, d_model)
        self.pos_embed = nn.Embedding(max_len, d_model)
        self.norm = LayerNormalization(d_model)

    def forward(self, x):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
        tok_emb = self.proj(x.float())  # Ensure consistency in floating-point precision
        embedding = tok_emb + self.pos_embed(pos)
        return self.norm(embedding)

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, Q, K, V):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
        attn = F.softmax(scores, dim=-1)
        context = torch.matmul(attn, V)
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super().__init__()
        self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
        self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
        self.norm = LayerNormalization(D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        
    def forward(self, Q, K, V):
        residual, batch_size = Q, Q.size(0)
        q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)

        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
        output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
        output = self.linear(output)
        return residual + self.dropout(output), attn

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(D_MODEL, D_FF)
        self.fc2 = nn.Linear(D_FF, D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, x):
        output = self.fc2(self.dropout(F.relu(self.fc1(x))))
        return x + self.dropout(output)

class EncoderLayer(nn.Module):
    def __init__(self):
        super().__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, enc_inputs):
        attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
        attn_outputs = self.norm(attn_outputs)
        enc_outputs = self.pos_ffn(attn_outputs)
        return enc_outputs, attn

class LWM(torch.nn.Module):
    def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
        super().__init__()
        self.embedding = Embedding(element_length, d_model, max_len)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
        self.linear = nn.Linear(d_model, d_model)
        self.norm = LayerNormalization(d_model)

        embed_weight = self.embedding.proj.weight
        d_model, n_dim = embed_weight.size()
        self.decoder = nn.Linear(d_model, n_dim, bias=False)
        self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
        self.decoder_bias = nn.Parameter(torch.zeros(n_dim))

    @classmethod
    def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None):
        # Define model
        model = cls().to(device)

        # Load model weights
        ckpt_path = ckpt_name
        model.load_state_dict(torch.load(ckpt_path, map_location=device))
        print(f"Model loaded successfully from {ckpt_path} to {device}")

        return model

    def forward(self, input_ids, masked_pos):
        output = self.embedding(input_ids)
        for layer in self.layers:
            output, _ = layer(output)

        masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
        h_masked = torch.gather(output, 1, masked_pos)
        h_masked = self.norm(F.relu(self.linear(h_masked)))
        logits_lm = self.decoder(h_masked) + self.decoder_bias

        return logits_lm, output