whywynn commited on
Commit
9ed5967
·
1 Parent(s): 944d92e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:357c5460534aea29c3aa8eb80c48cde52a7d1c430690e7f47c59bd5eb043e000
3
+ size 123167
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e669a561240>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e669a555800>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692153345302735042,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwsJ/v137Wj/skO89+oRuvwdxir4/me89Cj6Rv7P+oTzpmu89ArCbP/V0nz3nkO89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk5Ycvy6FvL9b55U/9gMbvkwEYz8ZWao/W4p6vNykZL+SJZs+zpS4Pah8vj+JHyk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABiK/4+B0sXPuMvZT7GLTW/kO7mP3FpJb/sfv4/wsJ/v137Wj/skO89sHnWvGFeCzqLpgG86wrUO5pirTw8CF89r7/vu5wDtrzXFDu7Bw7aPgM4x73Uxoe+j98av8AIaz8dpTC/+n7+P/qEbr8HcYq+P5nvPSw12byJ1RI6Pur1uwLM4Tv9FbA8QQlfPRPz77ttA7a8Dgccu7BTxz01pny+C4ZZPqQZhj9Vjw1ASpKjPpBFEr8KPpG/s/6hPOma7z1n5ti8DUW9Of8iAbzDZOg7ONeqPLcjXj3h0bm7B/ajvAPUO7toMxc/TVWHvoQMpb0linm/CUSFvpj9Xb/EQhK/ArCbP/V0nz3nkO89wHjWvGdeCzro+gO8/wrUOydlrTw0CV89yPbvu50Dtrx8FTu7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-0.9990655 0.855398 0.11697564]\n [-0.93171656 -0.27039358 0.11699151]\n [-1.1347058 0.01977477 0.11699469]\n [ 1.2163088 0.0778598 0.1169756 ]]",
34
+ "desired_goal": "[[-0.6116726 -1.4728143 1.1711229 ]\n [-0.1513823 0.8867843 1.330844 ]\n [-0.01529178 -0.89314055 0.303021 ]\n [ 0.09012757 1.4881792 0.66063744]]",
35
+ "observation": "[[ 4.96424735e-01 1.47747144e-01 2.23815486e-01 -7.07729697e-01\n 1.80415535e+00 -6.46140158e-01 1.98824835e+00 -9.99065518e-01\n 8.55397999e-01 1.16975635e-01 -2.61810720e-02 5.31649275e-04\n -7.91324209e-03 6.47102809e-03 2.11651810e-02 5.44512123e-02\n -7.31655164e-03 -2.22185180e-02 -2.85463571e-03]\n [ 4.25888270e-01 -9.72748026e-02 -2.65188813e-01 -6.04973733e-01\n 9.18102264e-01 -6.90019429e-01 1.98825002e+00 -9.31716561e-01\n -2.70393580e-01 1.16991512e-01 -2.65146121e-02 5.60127723e-04\n -7.50473049e-03 6.89077470e-03 2.14948598e-02 5.44521846e-02\n -7.32267788e-03 -2.22184304e-02 -2.38079159e-03]\n [ 9.73275900e-02 -2.46727780e-01 2.12425396e-01 1.04765749e+00\n 2.21187329e+00 3.19475472e-01 -5.71373940e-01 -1.13470578e+00\n 1.97747704e-02 1.16994686e-01 -2.64770519e-02 3.61003360e-04\n -7.88187888e-03 7.09208986e-03 2.08545774e-02 5.42332791e-02\n -5.67077147e-03 -2.00147759e-02 -2.86603044e-03]\n [ 5.90628147e-01 -2.64322668e-01 -8.05902779e-02 -9.74764168e-01\n -2.60284692e-01 -8.67150784e-01 -5.71331263e-01 1.21630883e+00\n 7.78597966e-02 1.16975598e-01 -2.61806250e-02 5.31649624e-04\n -8.05542618e-03 6.47103740e-03 2.11663973e-02 5.44521362e-02\n -7.32311979e-03 -2.22185198e-02 -2.85467412e-03]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoRm+PZkU1TwK16M8LitdPa9LjL0K16M8J9NzPc5SVb0K16M8l+A8PL7FELwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPo08vCIPl73o6fQ9RaiOvdnOpr0K16M8Sb5yvepmuj3Gcx497BOCvdENBb2jWD8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAoRm+PZkU1TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAC4rXT2vS4y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAn03M9zlJVvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAl+A8PL7FELwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.09282232 0.0260108 0.02 ]\n [ 0.05399626 -0.06850373 0.02 ]\n [ 0.05952754 -0.05208092 0.02 ]\n [ 0.01152816 -0.00883621 0.02 ]]",
45
+ "desired_goal": "[[-0.01150828 -0.07375933 0.11958677]\n [-0.06965689 -0.08144922 0.02 ]\n [-0.0592635 0.09101661 0.03868463]\n [-0.06351456 -0.03248388 0.18686156]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.2822321e-02\n 2.6010798e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.3996257e-02\n -6.8503730e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.9527542e-02\n -5.2080922e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1528156e-02\n -8.8362079e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CsJS7FS88LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJYjin5zpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJR8lPacqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJZ6WHDaXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJlDKgZjydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJp+C04R3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJjO1OTJRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJrtwzch1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ3H9ehPCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ8EIPbwjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ1QFLWZrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ99Y4hlldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKJrFwT/RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKOtrsSkCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKH5eRgZ1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKQULtu1ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKbp/XoTxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKgpYT0xudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKZvYODradX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKiIN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKtg4XGfgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsKt1f/m1ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKyaN2ki2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKrpWeYlZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK0N4iX6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK/1l5GBndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLEdKVY6odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK9pSR8txdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLF1dgOSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLRPFm4AkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLV5I6KcedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLPJAlfJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLXfpt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLjJd8iOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLny9EkSmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLg9Pci4bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLpC4rjHXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL0qsEJSjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL5SJbdJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLycbiqACdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL6X3g1m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMGDgQ6IWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsMGY8dPtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMKq9wm3OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMEA3tKI0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMMyowVTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMZUqQRwqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMdoc7yQQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMWz238XOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMfNbTtsvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMrUqx1PndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMvpfpljFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMpaFmFrVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsMpyn+AEudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMxiy6cy4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsM9fO2RaHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNB1Fpfx+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsNCJGWldkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsM7akqMFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNErAP/aQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNQ+mNzbOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNVl4s3AEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNO+rMkhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNXJxeb/fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNi3DWK/EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNnhWgezVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNgsIE8q4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsNhBpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNpkvsZ5zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN1eOwPiDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN6Gois4ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNzg4wRGudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN6pU5uIidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOGnOryUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOLOlGgBcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOEs7uDzzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOMf+KjzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsObW4EwFldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOgXEqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOa/JV81GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOqOscQyzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO4bayrxRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO9elsP8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO4G0NSZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPHO/+Kj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPVsbvPTodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPareANG3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPVWvB7/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPlH2IwdsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsP0BUaQ3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsP5Os90RwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPz7g0j1PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQBQ7kn1GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQNOB+WnkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQR/iHZbqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQLfSpiqidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQSuMl1KXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQeghB7eEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQjFEJBw/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQckiliz+dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f45df1e4a3a254a48006a4500ef3d1fb6035a505b39457d04a4da67681fbee10
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96f0c631fb7c2308d9ac154d7ca5ab505f2ffb8f89b565e82ad9cababb24205b
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e669a561240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e669a555800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692153345302735042, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwsJ/v137Wj/skO89+oRuvwdxir4/me89Cj6Rv7P+oTzpmu89ArCbP/V0nz3nkO89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk5Ycvy6FvL9b55U/9gMbvkwEYz8ZWao/W4p6vNykZL+SJZs+zpS4Pah8vj+JHyk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABiK/4+B0sXPuMvZT7GLTW/kO7mP3FpJb/sfv4/wsJ/v137Wj/skO89sHnWvGFeCzqLpgG86wrUO5pirTw8CF89r7/vu5wDtrzXFDu7Bw7aPgM4x73Uxoe+j98av8AIaz8dpTC/+n7+P/qEbr8HcYq+P5nvPSw12byJ1RI6Pur1uwLM4Tv9FbA8QQlfPRPz77ttA7a8Dgccu7BTxz01pny+C4ZZPqQZhj9Vjw1ASpKjPpBFEr8KPpG/s/6hPOma7z1n5ti8DUW9Of8iAbzDZOg7ONeqPLcjXj3h0bm7B/ajvAPUO7toMxc/TVWHvoQMpb0linm/CUSFvpj9Xb/EQhK/ArCbP/V0nz3nkO89wHjWvGdeCzro+gO8/wrUOydlrTw0CV89yPbvu50Dtrx8FTu7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.9990655 0.855398 0.11697564]\n [-0.93171656 -0.27039358 0.11699151]\n [-1.1347058 0.01977477 0.11699469]\n [ 1.2163088 0.0778598 0.1169756 ]]", "desired_goal": "[[-0.6116726 -1.4728143 1.1711229 ]\n [-0.1513823 0.8867843 1.330844 ]\n [-0.01529178 -0.89314055 0.303021 ]\n [ 0.09012757 1.4881792 0.66063744]]", "observation": "[[ 4.96424735e-01 1.47747144e-01 2.23815486e-01 -7.07729697e-01\n 1.80415535e+00 -6.46140158e-01 1.98824835e+00 -9.99065518e-01\n 8.55397999e-01 1.16975635e-01 -2.61810720e-02 5.31649275e-04\n -7.91324209e-03 6.47102809e-03 2.11651810e-02 5.44512123e-02\n -7.31655164e-03 -2.22185180e-02 -2.85463571e-03]\n [ 4.25888270e-01 -9.72748026e-02 -2.65188813e-01 -6.04973733e-01\n 9.18102264e-01 -6.90019429e-01 1.98825002e+00 -9.31716561e-01\n -2.70393580e-01 1.16991512e-01 -2.65146121e-02 5.60127723e-04\n -7.50473049e-03 6.89077470e-03 2.14948598e-02 5.44521846e-02\n -7.32267788e-03 -2.22184304e-02 -2.38079159e-03]\n [ 9.73275900e-02 -2.46727780e-01 2.12425396e-01 1.04765749e+00\n 2.21187329e+00 3.19475472e-01 -5.71373940e-01 -1.13470578e+00\n 1.97747704e-02 1.16994686e-01 -2.64770519e-02 3.61003360e-04\n -7.88187888e-03 7.09208986e-03 2.08545774e-02 5.42332791e-02\n -5.67077147e-03 -2.00147759e-02 -2.86603044e-03]\n [ 5.90628147e-01 -2.64322668e-01 -8.05902779e-02 -9.74764168e-01\n -2.60284692e-01 -8.67150784e-01 -5.71331263e-01 1.21630883e+00\n 7.78597966e-02 1.16975598e-01 -2.61806250e-02 5.31649624e-04\n -8.05542618e-03 6.47103740e-03 2.11663973e-02 5.44521362e-02\n -7.32311979e-03 -2.22185198e-02 -2.85467412e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoRm+PZkU1TwK16M8LitdPa9LjL0K16M8J9NzPc5SVb0K16M8l+A8PL7FELwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPo08vCIPl73o6fQ9RaiOvdnOpr0K16M8Sb5yvepmuj3Gcx497BOCvdENBb2jWD8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAoRm+PZkU1TwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAC4rXT2vS4y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAn03M9zlJVvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAl+A8PL7FELwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.09282232 0.0260108 0.02 ]\n [ 0.05399626 -0.06850373 0.02 ]\n [ 0.05952754 -0.05208092 0.02 ]\n [ 0.01152816 -0.00883621 0.02 ]]", "desired_goal": "[[-0.01150828 -0.07375933 0.11958677]\n [-0.06965689 -0.08144922 0.02 ]\n [-0.0592635 0.09101661 0.03868463]\n [-0.06351456 -0.03248388 0.18686156]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.2822321e-02\n 2.6010798e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.3996257e-02\n -6.8503730e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.9527542e-02\n -5.2080922e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1528156e-02\n -8.8362079e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CsJS7FS88LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJYjin5zpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJR8lPacqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJZ6WHDaXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJlDKgZjydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJp+C04R3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJjO1OTJRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJrtwzch1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ3H9ehPCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ8EIPbwjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ1QFLWZrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsJ99Y4hlldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKJrFwT/RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKOtrsSkCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKH5eRgZ1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKQULtu1ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKbp/XoTxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKgpYT0xudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKZvYODradX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKiIN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKtg4XGfgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsKt1f/m1ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKyaN2ki2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsKrpWeYlZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK0N4iX6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK/1l5GBndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLEdKVY6odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsK9pSR8txdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLF1dgOSXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLRPFm4AkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLV5I6KcedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLPJAlfJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLXfpt78fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLjJd8iOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLny9EkSmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLg9Pci4bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLpC4rjHXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL0qsEJSjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL5SJbdJrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsLycbiqACdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsL6X3g1m8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMGDgQ6IWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsMGY8dPtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMKq9wm3OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMEA3tKI0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMMyowVTKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMZUqQRwqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMdoc7yQQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMWz238XOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMfNbTtsvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMrUqx1PndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMvpfpljFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMpaFmFrVdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsMpyn+AEudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsMxiy6cy4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsM9fO2RaHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNB1Fpfx+dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsNCJGWldkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsM7akqMFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNErAP/aQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNQ+mNzbOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNVl4s3AEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNO+rMkhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNXJxeb/fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNi3DWK/EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNnhWgezVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNgsIE8q4dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CsNhBpQDV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNpkvsZ5zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN1eOwPiDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN6Gois4ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsNzg4wRGudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsN6pU5uIidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOGnOryUcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOLOlGgBcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOEs7uDzzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOMf+KjzqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsObW4EwFldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOgXEqDsddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOa/JV81GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsOqOscQyzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO4bayrxRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO9elsP8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsO4G0NSZSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPHO/+Kj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPVsbvPTodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPareANG3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPVWvB7/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPlH2IwdsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsP0BUaQ3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsP5Os90RwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsPz7g0j1PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQBQ7kn1GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQNOB+WnkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQR/iHZbqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQLfSpiqidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQSuMl1KXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQeghB7eEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQjFEJBw/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CsQckiliz+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (836 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-16T03:37:26.116905"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:621aca7697ad7192f91d164ae5e75acc6529ba932301de513a3fca6247e962c5
3
+ size 3013