File size: 23,437 Bytes
9066b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
from typing import Any, Dict, List, Optional, Tuple
import torch
from transformers.cache_utils import Cache, DynamicCache, SinkCache
from .utils import LayerTypeParser
class IndexedCache(Cache):
"""
Similar to the `DynamicCache` class, but with the ability to index the cache by layer index. DynamicCache
assumes that all layers compute KVs, while IndexedCache allows for a more flexible cache structure.
"""
build_position_ids_based_on_cache = False
def __init__(self) -> None:
super().__init__()
self.key_cache: Dict[int, torch.Tensor] = {}
self.value_cache: Dict[int, torch.Tensor] = {}
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self._update = True # to prevent the cache from updating when inference with iterations
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx in self.key_cache:
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in sorted(self.key_cache.keys()):
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers that compute KVs in the model.
"""
return len(self.key_cache)
@property
def min_layer(self) -> int:
return min(self.key_cache.keys()) if len(self.key_cache) > 0 else None
def is_min_layer(self, layer_idx: int) -> bool:
return self.min_layer is None or self.min_layer == layer_idx
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if self.is_min_layer(layer_idx):
self._seen_tokens += key_states.shape[-2]
# Retrieve the cache
if layer_idx not in self.key_cache:
new_key_states = key_states
new_value_states = value_states
else:
new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
# Update the cache
if self._update:
self.key_cache[layer_idx] = new_key_states
self.value_cache[layer_idx] = new_value_states
return new_key_states, new_value_states
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if layer_idx is None:
layer_idx = self.min_layer
# TODO: deprecate this function in favor of `cache_position`
is_empty_layer = (
(len(self.key_cache) == 0) # no cache in any layer
or (layer_idx not in self.key_cache) # skipped `layer_idx` and hasn't run a layer with cache after it
)
layer_seq_length = self.key_cache[layer_idx].shape[-2] if not is_empty_layer else 0
return layer_seq_length
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. IndexedCache does not have a maximum length."""
return None
@classmethod
def from_cache(cls, dynamic_cache: DynamicCache, *args, **kwargs) -> "IndexedCache":
"""Converts a dynamic cache into an equivalent `IndexedCache`."""
cache = cls(*args, **kwargs)
cache._seen_tokens = dynamic_cache._seen_tokens
for layer_idx in range(len(dynamic_cache.key_cache)):
key_states, value_states = dynamic_cache[layer_idx]
cache.update(key_states, value_states, layer_idx)
return cache
class IndexedSinkCache(Cache):
"""
This is a fix to the SinkCache class in the transformers library. It also allows for the cache to be indexed by
layer index, similar to the `IndexedCache` class.
"""
build_position_ids_based_on_cache = True
def __init__(self, window_length: int = None, num_sink_tokens: int = None) -> None:
super().__init__()
self.key_cache: Dict[int, torch.Tensor] = {}
self.value_cache: Dict[int, torch.Tensor] = {}
self.window_length = window_length
self.num_sink_tokens = num_sink_tokens
self.cos_sin_rerotation_cache = {}
self._cos_cache = None
self._sin_cache = None
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self._update = True # to prevent the cache from updating when inference with iterations
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> torch.Tensor:
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
return rotated_key_states
def _get_rerotation_cos_sin(
self, offset: int, dtype: torch.dtype, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
if offset not in self.cos_sin_rerotation_cache:
# Upcast to float32 temporarily for better accuracy
cos = cos.to(torch.float32)
sin = sin.to(torch.float32)
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
original_cos = cos[self.num_sink_tokens + offset :]
shifted_cos = cos[self.num_sink_tokens : -offset]
original_sin = sin[self.num_sink_tokens + offset :]
shifted_sin = sin[self.num_sink_tokens : -offset]
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
self.cos_sin_rerotation_cache[offset] = (
rerotation_cos.to(dtype).unsqueeze(0),
rerotation_sin.to(dtype).unsqueeze(0),
)
return self.cos_sin_rerotation_cache[offset]
@property
def min_layer(self) -> int:
return min(self.key_cache.keys()) if len(self.key_cache) > 0 else None
def is_min_layer(self, layer_idx: int) -> bool:
return self.min_layer is None or self.min_layer == layer_idx
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# TODO: deprecate this function in favor of `cache_position`
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
if layer_idx is None:
layer_idx = self.min_layer
if layer_idx not in self.key_cache:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.window_length
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
rotation as the tokens are shifted.
Return:
A tuple containing the updated key and value states.
"""
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
# with partially rotated position embeddings, like Phi or Persimmon.
sin = cache_kwargs.get("sin")
cos = cache_kwargs.get("cos")
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
using_rope = cos is not None and sin is not None
# Update the number of seen tokens
if self.is_min_layer(layer_idx):
self._seen_tokens += key_states.shape[-2]
# Update the sin/cos cache, which holds sin/cos values for all possible positions
if using_rope and self.is_min_layer(layer_idx):
# BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
# after all RoPE models have a llama-like cache utilization.
if cos.dim() == 2:
self._cos_cache = cos
self._sin_cache = sin
else:
if self._cos_cache is None:
self._cos_cache = cos[0, ...]
self._sin_cache = sin[0, ...]
elif self._cos_cache.shape[0] < self.window_length + key_states.shape[-2]:
self._cos_cache = torch.cat([self._cos_cache[: self.window_length], cos[0, ...]], dim=0)
self._sin_cache = torch.cat([self._sin_cache[: self.window_length], sin[0, ...]], dim=0)
# [bsz, num_heads, seq_len, head_dim]
if layer_idx not in self.key_cache:
# Empty cache
new_key_states = key_states
new_value_states = value_states
else:
# Growing cache
new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
if self._update:
self.key_cache[layer_idx] = new_key_states
self.value_cache[layer_idx] = new_value_states
# If the cache is full, we need to shift the cache
if (seq_length := self.get_seq_length(layer_idx)) > self.window_length:
# Shifting cache
keys_to_keep = self.key_cache[layer_idx][:, :, -self.window_length + self.num_sink_tokens :]
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
if using_rope:
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
seq_length - self.window_length,
key_states.dtype,
self._cos_cache[:seq_length],
self._sin_cache[:seq_length],
)
if partial_rotation_size is not None:
keys_to_keep, keys_pass = (
keys_to_keep[..., :partial_rotation_size],
keys_to_keep[..., partial_rotation_size:],
)
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
if partial_rotation_size is not None:
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep], dim=-2)
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
values_to_keep = self.value_cache[layer_idx][:, :, -self.window_length + self.num_sink_tokens :]
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep], dim=-2)
return new_key_states, new_value_states
@classmethod
def from_cache(cls, sink_cache: SinkCache, *args, **kwargs) -> "IndexedSinkCache":
"""Converts a dynamic cache into an equivalent `IndexedCache`."""
cache = cls(*args, **kwargs)
cache.window_length = sink_cache.window_length
cache.num_sink_tokens = sink_cache.num_sink_tokens
cache._seen_tokens = sink_cache._seen_tokens
cache._cos_cache = sink_cache._cos_cache
cache._sin_cache = sink_cache._sin_cache
cache.cos_sin_rerotation_cache = sink_cache.cos_sin_rerotation_cache
for layer_idx in range(len(sink_cache.key_cache)):
cache.key_cache[layer_idx] = sink_cache.key_cache[layer_idx]
cache.value_cache[layer_idx] = sink_cache.value_cache[layer_idx]
return cache
class IndexedSlidingWindowCache(IndexedCache):
"""
Similar to the `SlidingWindowCache` class, but with the ability to index the cache by layer index. It is no longer
a subclass of `StaticCache` as it is dynamic.
"""
build_position_ids_based_on_cache = False
def __init__(self, sliding_window: int = None) -> None:
super().__init__()
self.sliding_window = sliding_window
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor]:
# Update the number of seen tokens
if self.is_min_layer(layer_idx):
self._seen_tokens += key_states.shape[-2]
# [bsz, num_heads, seq_len, head_dim]
if layer_idx not in self.key_cache:
# Empty cache
new_key_states = key_states
new_value_states = value_states
else:
# Growing cache
new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
if self._update:
self.key_cache[layer_idx] = new_key_states
self.value_cache[layer_idx] = new_value_states
# If the cache is full, we need to shift the cache
if self.get_seq_length(layer_idx) > self.sliding_window:
self.key_cache[layer_idx] = self.key_cache[layer_idx][:, :, -self.sliding_window :]
self.value_cache[layer_idx] = self.value_cache[layer_idx][:, :, -self.sliding_window :]
return new_key_states, new_value_states
def get_max_length(self) -> Optional[int]:
return self.sliding_window
@classmethod
def from_cache(cls, sliding_window_cache: "IndexedSlidingWindowCache", *args, **kwargs) -> "IndexedSlidingWindowCache":
"""This is to override the `from_cache` method in the `IndexedCache` class."""
cache = cls(*args, **kwargs)
cache._seen_tokens = sliding_window_cache._seen_tokens
cache.sliding_window = sliding_window_cache.sliding_window
for layer_idx in range(len(sliding_window_cache.key_cache)):
cache.key_cache[layer_idx] = sliding_window_cache.key_cache[layer_idx]
cache.value_cache[layer_idx] = sliding_window_cache.value_cache[layer_idx]
return cache
class IndexedHybridCache(IndexedSlidingWindowCache, IndexedCache):
"""
Hybrid Cache class to be used for models that alternate between a local sliding window attention and global
attention in every other layer. Under the hood, Hybrid Cache leverages ["IndexedSlidingWindowCache"] for
sliding window attention and ["IndexedCache"] for global attention.
"""
build_position_ids_based_on_cache = False
def __init__(self, parser: LayerTypeParser = None, sliding_window: int = None) -> None:
super().__init__(sliding_window=sliding_window)
self.parser = parser
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor]:
if self.parser[layer_idx].use_sliding_window:
return IndexedSlidingWindowCache.update(self, key_states, value_states, layer_idx, cache_kwargs)
else:
return IndexedCache.update(self, key_states, value_states, layer_idx, cache_kwargs)
def get_max_length(self) -> Optional[int]:
return IndexedCache.get_max_length(self)
@classmethod
def from_cache(cls, hybrid_cache: "IndexedHybridCache", *args, **kwargs) -> "IndexedHybridCache":
"""This is to override the `from_cache` method in the `IndexedSlidingWindowCache` class."""
cache = cls(*args, **kwargs)
cache._seen_tokens = hybrid_cache._seen_tokens
cache.sliding_window = hybrid_cache.sliding_window
cache.parser = hybrid_cache.parser
for layer_idx in range(len(hybrid_cache.key_cache)):
cache.key_cache[layer_idx] = hybrid_cache.key_cache[layer_idx]
cache.value_cache[layer_idx] = hybrid_cache.value_cache[layer_idx]
return cache
class LayerCache(torch.nn.Module):
"""
A cache for storing the key-value pairs for layers.
"""
def __init__(self) -> None:
"""
The placeholder is used to expand the key-value pairs if the layer attends to the top layers.
Size: (batch_size, num_key_value_heads, 1, head_dim)
"""
super().__init__()
self.key_layer_cache: Dict[int, torch.Tensor] = {}
self.value_layer_cache: Dict[int, torch.Tensor] = {}
self.layer_type = None
self.placeholder = None
def setup(self, placeholder: torch.Tensor):
"""setup the cache, calling this function is necessary if there is a layer that attends to the top layers"""
self.placeholder = placeholder
def initialize(self, parser: LayerTypeParser, sequence_length: int):
"""initialize the cache"""
layers_to_init = {parser[idx].attends_to for idx in range(len(parser)) if parser[idx].attends_top}
if layers_to_init:
b, h, _, d = self.placeholder.size()
init_kvs = self.placeholder.new_zeros((b, h, sequence_length, d))
for layer_idx in layers_to_init:
self.layer_append(layer_idx, init_kvs, init_kvs)
def layer_get(self, layer_idx: int, zerofill: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
key_states = self.key_layer_cache.get(layer_idx, None)
value_states = self.value_layer_cache.get(layer_idx, None)
if zerofill:
if key_states is None:
key_states = self.placeholder
value_states = self.placeholder
else:
key_states = torch.cat([self.placeholder, key_states], dim=2)
value_states = torch.cat([self.placeholder, value_states], dim=2)
return key_states, value_states
def layer_set(self, layer_idx: int, key: torch.Tensor, value: torch.Tensor):
self.key_layer_cache[layer_idx] = key
self.value_layer_cache[layer_idx] = value
def layer_append(self, layer_idx: int, key: torch.Tensor, value: torch.Tensor):
if layer_idx not in self.key_layer_cache:
self.key_layer_cache[layer_idx] = key
self.value_layer_cache[layer_idx] = value
else:
self.key_layer_cache[layer_idx] = torch.cat([self.key_layer_cache[layer_idx], key], dim=2)
self.value_layer_cache[layer_idx] = torch.cat([self.value_layer_cache[layer_idx], value], dim=2)
class LayerIndexedCache(LayerCache, IndexedCache):
"""
A cache for storing the key-value pairs for layers, in combination with the ability of standard KV cache.
"""
def __init__(self) -> None:
LayerCache.__init__(self)
IndexedCache.__init__(self)
class LayerIndexedSinkCache(LayerCache, IndexedSinkCache):
"""
A cache for storing the key-value pairs for layers, in combination with the ability of sink KV cache.
"""
def __init__(self) -> None:
LayerCache.__init__(self)
IndexedSinkCache.__init__(self)
class LayerIndexedSlidingWindowCache(LayerCache, IndexedSlidingWindowCache):
"""
A cache for storing the key-value pairs for layers, in combination with the ability of sliding window KV cache.
"""
def __init__(self) -> None:
LayerCache.__init__(self)
IndexedSlidingWindowCache.__init__(self)
class LayerIndexedHybridCache(LayerCache, IndexedHybridCache):
"""
A cache for storing the key-value pairs for layers, in combination with the ability of hybrid KV cache.
"""
def __init__(self) -> None:
LayerCache.__init__(self)
IndexedHybridCache.__init__(self)
class AutoLayerCache(torch.nn.Module):
"""
AutoLayerCache is a module that automatically creates a cache from an existing cache.
"""
CACHE_MAPPING = {
DynamicCache: LayerIndexedCache,
SinkCache: LayerIndexedSinkCache,
IndexedSlidingWindowCache: LayerIndexedSlidingWindowCache,
IndexedHybridCache: LayerIndexedHybridCache,
}
def __init__(self, *args, **kwargs):
raise RuntimeError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_cache(cache)` method."
)
@classmethod
def from_cache(cls, cache: Cache, *args, **kwargs):
"""
Create a new cache from an existing cache. The new cache will have the same type as the original cache.
"""
cache_type = type(cache)
if cache_type not in cls.CACHE_MAPPING:
raise ValueError(f"Cache type {cache_type} is not supported by {cls.__name__}.")
cache_class = cls.CACHE_MAPPING[cache_type]
if hasattr(cache_class, "from_cache"):
return cache_class.from_cache(cache, *args, **kwargs)
else:
# we init an empty cache and copy the attributes
new_cache = cache_class(*args, **kwargs)
new_cache.__dict__.update(cache.__dict__)
return new_cache
|