File size: 23,437 Bytes
9066b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
from typing import Any, Dict, List, Optional, Tuple

import torch

from transformers.cache_utils import Cache, DynamicCache, SinkCache

from .utils import LayerTypeParser


class IndexedCache(Cache):
    """
    Similar to the `DynamicCache` class, but with the ability to index the cache by layer index. DynamicCache
    assumes that all layers compute KVs, while IndexedCache allows for a more flexible cache structure.
    """
    build_position_ids_based_on_cache = False

    def __init__(self) -> None:
        super().__init__()
        self.key_cache: Dict[int, torch.Tensor] = {}
        self.value_cache: Dict[int, torch.Tensor] = {}
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
        self._update = True # to prevent the cache from updating when inference with iterations

    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx in self.key_cache:
            return (self.key_cache[layer_idx], self.value_cache[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in sorted(self.key_cache.keys()):
            yield (self.key_cache[layer_idx], self.value_cache[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers that compute KVs in the model.
        """
        return len(self.key_cache)

    @property
    def min_layer(self) -> int:
        return min(self.key_cache.keys()) if len(self.key_cache) > 0 else None

    def is_min_layer(self, layer_idx: int) -> bool:
        return self.min_layer is None or self.min_layer == layer_idx

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.

        Return:
            A tuple containing the updated key and value states.
        """
        # Update the number of seen tokens
        if self.is_min_layer(layer_idx):
            self._seen_tokens += key_states.shape[-2]

        # Retrieve the cache
        if layer_idx not in self.key_cache:
            new_key_states = key_states
            new_value_states = value_states
        else:
            new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        # Update the cache
        if self._update:
            self.key_cache[layer_idx] = new_key_states
            self.value_cache[layer_idx] = new_value_states

        return new_key_states, new_value_states

    def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if layer_idx is None:
            layer_idx = self.min_layer

        # TODO: deprecate this function in favor of `cache_position`
        is_empty_layer = (
            (len(self.key_cache) == 0)  # no cache in any layer
            or (layer_idx not in self.key_cache)  # skipped `layer_idx` and hasn't run a layer with cache after it
        )
        layer_seq_length = self.key_cache[layer_idx].shape[-2] if not is_empty_layer else 0
        return layer_seq_length

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. IndexedCache does not have a maximum length."""
        return None

    @classmethod
    def from_cache(cls, dynamic_cache: DynamicCache, *args, **kwargs) -> "IndexedCache":
        """Converts a dynamic cache into an equivalent `IndexedCache`."""
        cache = cls(*args, **kwargs)

        cache._seen_tokens = dynamic_cache._seen_tokens
        for layer_idx in range(len(dynamic_cache.key_cache)):
            key_states, value_states = dynamic_cache[layer_idx]
            cache.update(key_states, value_states, layer_idx)

        return cache


class IndexedSinkCache(Cache):
    """
    This is a fix to the SinkCache class in the transformers library. It also allows for the cache to be indexed by
    layer index, similar to the `IndexedCache` class.
    """
    build_position_ids_based_on_cache = True

    def __init__(self, window_length: int = None, num_sink_tokens: int = None) -> None:
        super().__init__()
        self.key_cache: Dict[int, torch.Tensor] = {}
        self.value_cache: Dict[int, torch.Tensor] = {}
        self.window_length = window_length
        self.num_sink_tokens = num_sink_tokens
        self.cos_sin_rerotation_cache = {}
        self._cos_cache = None
        self._sin_cache = None
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen
        self._update = True  # to prevent the cache from updating when inference with iterations

    @staticmethod
    def _rotate_half(x):
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

    def _apply_key_rotary_pos_emb(
        self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
    ) -> torch.Tensor:
        rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
        return rotated_key_states

    def _get_rerotation_cos_sin(
        self, offset: int, dtype: torch.dtype, cos: torch.Tensor, sin: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if offset not in self.cos_sin_rerotation_cache:
            # Upcast to float32 temporarily for better accuracy
            cos = cos.to(torch.float32)
            sin = sin.to(torch.float32)

            # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
            original_cos = cos[self.num_sink_tokens + offset :]
            shifted_cos = cos[self.num_sink_tokens : -offset]
            original_sin = sin[self.num_sink_tokens + offset :]
            shifted_sin = sin[self.num_sink_tokens : -offset]
            rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
            rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin

            self.cos_sin_rerotation_cache[offset] = (
                rerotation_cos.to(dtype).unsqueeze(0),
                rerotation_sin.to(dtype).unsqueeze(0),
            )
        return self.cos_sin_rerotation_cache[offset]

    @property
    def min_layer(self) -> int:
        return min(self.key_cache.keys()) if len(self.key_cache) > 0 else None

    def is_min_layer(self, layer_idx: int) -> bool:
        return self.min_layer is None or self.min_layer == layer_idx

    def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
        if layer_idx is None:
            layer_idx = self.min_layer

        if layer_idx not in self.key_cache:
            return 0

        return self.key_cache[layer_idx].shape[-2]

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states."""
        return self.window_length

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
                `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
                rotation as the tokens are shifted.

        Return:
            A tuple containing the updated key and value states.
        """
        # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
        # with partially rotated position embeddings, like Phi or Persimmon.
        sin = cache_kwargs.get("sin")
        cos = cache_kwargs.get("cos")
        partial_rotation_size = cache_kwargs.get("partial_rotation_size")
        using_rope = cos is not None and sin is not None

        # Update the number of seen tokens
        if self.is_min_layer(layer_idx):
            self._seen_tokens += key_states.shape[-2]

        # Update the sin/cos cache, which holds sin/cos values for all possible positions
        if using_rope and self.is_min_layer(layer_idx):
            # BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
            # after all RoPE models have a llama-like cache utilization.
            if cos.dim() == 2:
                self._cos_cache = cos
                self._sin_cache = sin
            else:
                if self._cos_cache is None:
                    self._cos_cache = cos[0, ...]
                    self._sin_cache = sin[0, ...]
                elif self._cos_cache.shape[0] < self.window_length + key_states.shape[-2]:
                    self._cos_cache = torch.cat([self._cos_cache[: self.window_length], cos[0, ...]], dim=0)
                    self._sin_cache = torch.cat([self._sin_cache[: self.window_length], sin[0, ...]], dim=0)

        # [bsz, num_heads, seq_len, head_dim]
        if layer_idx not in self.key_cache:
            # Empty cache
            new_key_states = key_states
            new_value_states = value_states

        else:
            # Growing cache
            new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        if self._update:
            self.key_cache[layer_idx] = new_key_states
            self.value_cache[layer_idx] = new_value_states

        # If the cache is full, we need to shift the cache
        if (seq_length := self.get_seq_length(layer_idx)) > self.window_length:
            # Shifting cache
            keys_to_keep = self.key_cache[layer_idx][:, :, -self.window_length + self.num_sink_tokens :]

            # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
            if using_rope:
                rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
                    seq_length - self.window_length,
                    key_states.dtype,
                    self._cos_cache[:seq_length],
                    self._sin_cache[:seq_length],
                )
                if partial_rotation_size is not None:
                    keys_to_keep, keys_pass = (
                        keys_to_keep[..., :partial_rotation_size],
                        keys_to_keep[..., partial_rotation_size:],
                    )
                keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
                if partial_rotation_size is not None:
                    keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)

            # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
            sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
            self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep], dim=-2)

            sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
            values_to_keep = self.value_cache[layer_idx][:, :, -self.window_length + self.num_sink_tokens :]
            self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep], dim=-2)

        return new_key_states, new_value_states

    @classmethod
    def from_cache(cls, sink_cache: SinkCache, *args, **kwargs) -> "IndexedSinkCache":
        """Converts a dynamic cache into an equivalent `IndexedCache`."""
        cache = cls(*args, **kwargs)

        cache.window_length = sink_cache.window_length
        cache.num_sink_tokens = sink_cache.num_sink_tokens
        cache._seen_tokens = sink_cache._seen_tokens
        cache._cos_cache = sink_cache._cos_cache
        cache._sin_cache = sink_cache._sin_cache
        cache.cos_sin_rerotation_cache = sink_cache.cos_sin_rerotation_cache
        for layer_idx in range(len(sink_cache.key_cache)):
            cache.key_cache[layer_idx] = sink_cache.key_cache[layer_idx]
            cache.value_cache[layer_idx] = sink_cache.value_cache[layer_idx]

        return cache


class IndexedSlidingWindowCache(IndexedCache):
    """
    Similar to the `SlidingWindowCache` class, but with the ability to index the cache by layer index. It is no longer
    a subclass of `StaticCache` as it is dynamic.
    """
    build_position_ids_based_on_cache = False

    def __init__(self, sliding_window: int = None) -> None:
        super().__init__()
        self.sliding_window = sliding_window

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor]:
        # Update the number of seen tokens
        if self.is_min_layer(layer_idx):
            self._seen_tokens += key_states.shape[-2]

        # [bsz, num_heads, seq_len, head_dim]
        if layer_idx not in self.key_cache:
            # Empty cache
            new_key_states = key_states
            new_value_states = value_states

        else:
            # Growing cache
            new_key_states = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            new_value_states = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        if self._update:
            self.key_cache[layer_idx] = new_key_states
            self.value_cache[layer_idx] = new_value_states

        # If the cache is full, we need to shift the cache
        if self.get_seq_length(layer_idx) > self.sliding_window:
            self.key_cache[layer_idx] = self.key_cache[layer_idx][:, :, -self.sliding_window :]
            self.value_cache[layer_idx] = self.value_cache[layer_idx][:, :, -self.sliding_window :]

        return new_key_states, new_value_states

    def get_max_length(self) -> Optional[int]:
        return self.sliding_window

    @classmethod
    def from_cache(cls, sliding_window_cache: "IndexedSlidingWindowCache", *args, **kwargs) -> "IndexedSlidingWindowCache":
        """This is to override the `from_cache` method in the `IndexedCache` class."""
        cache = cls(*args, **kwargs)

        cache._seen_tokens = sliding_window_cache._seen_tokens
        cache.sliding_window = sliding_window_cache.sliding_window
        for layer_idx in range(len(sliding_window_cache.key_cache)):
            cache.key_cache[layer_idx] = sliding_window_cache.key_cache[layer_idx]
            cache.value_cache[layer_idx] = sliding_window_cache.value_cache[layer_idx]

        return cache


class IndexedHybridCache(IndexedSlidingWindowCache, IndexedCache):
    """
    Hybrid Cache class to be used for models that alternate between a local sliding window attention and global
    attention in every other layer. Under the hood, Hybrid Cache leverages ["IndexedSlidingWindowCache"] for
    sliding window attention and ["IndexedCache"] for global attention.
    """
    build_position_ids_based_on_cache = False

    def __init__(self, parser: LayerTypeParser = None, sliding_window: int = None) -> None:
        super().__init__(sliding_window=sliding_window)
        self.parser = parser

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor]:
        if self.parser[layer_idx].use_sliding_window:
            return IndexedSlidingWindowCache.update(self, key_states, value_states, layer_idx, cache_kwargs)
        else:
            return IndexedCache.update(self, key_states, value_states, layer_idx, cache_kwargs)

    def get_max_length(self) -> Optional[int]:
        return IndexedCache.get_max_length(self)

    @classmethod
    def from_cache(cls, hybrid_cache: "IndexedHybridCache", *args, **kwargs) -> "IndexedHybridCache":
        """This is to override the `from_cache` method in the `IndexedSlidingWindowCache` class."""
        cache = cls(*args, **kwargs)

        cache._seen_tokens = hybrid_cache._seen_tokens
        cache.sliding_window = hybrid_cache.sliding_window
        cache.parser = hybrid_cache.parser
        for layer_idx in range(len(hybrid_cache.key_cache)):
            cache.key_cache[layer_idx] = hybrid_cache.key_cache[layer_idx]
            cache.value_cache[layer_idx] = hybrid_cache.value_cache[layer_idx]

        return cache


class LayerCache(torch.nn.Module):
    """
    A cache for storing the key-value pairs for layers.
    """
    def __init__(self) -> None:
        """
        The placeholder is used to expand the key-value pairs if the layer attends to the top layers.
        Size: (batch_size, num_key_value_heads, 1, head_dim)
        """
        super().__init__()
        self.key_layer_cache: Dict[int, torch.Tensor] = {}
        self.value_layer_cache: Dict[int, torch.Tensor] = {}
        self.layer_type = None
        self.placeholder = None

    def setup(self, placeholder: torch.Tensor):
        """setup the cache, calling this function is necessary if there is a layer that attends to the top layers"""
        self.placeholder = placeholder

    def initialize(self, parser: LayerTypeParser, sequence_length: int):
        """initialize the cache"""
        layers_to_init = {parser[idx].attends_to for idx in range(len(parser)) if parser[idx].attends_top}

        if layers_to_init:
            b, h, _, d = self.placeholder.size()
            init_kvs = self.placeholder.new_zeros((b, h, sequence_length, d))

            for layer_idx in layers_to_init:
                self.layer_append(layer_idx, init_kvs, init_kvs)

    def layer_get(self, layer_idx: int, zerofill: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        key_states = self.key_layer_cache.get(layer_idx, None)
        value_states = self.value_layer_cache.get(layer_idx, None)

        if zerofill:
            if key_states is None:
                key_states = self.placeholder
                value_states = self.placeholder
            else:
                key_states = torch.cat([self.placeholder, key_states], dim=2)
                value_states = torch.cat([self.placeholder, value_states], dim=2)

        return key_states, value_states

    def layer_set(self, layer_idx: int, key: torch.Tensor, value: torch.Tensor):
        self.key_layer_cache[layer_idx] = key
        self.value_layer_cache[layer_idx] = value

    def layer_append(self, layer_idx: int, key: torch.Tensor, value: torch.Tensor):
        if layer_idx not in self.key_layer_cache:
            self.key_layer_cache[layer_idx] = key
            self.value_layer_cache[layer_idx] = value
        else:
            self.key_layer_cache[layer_idx] = torch.cat([self.key_layer_cache[layer_idx], key], dim=2)
            self.value_layer_cache[layer_idx] = torch.cat([self.value_layer_cache[layer_idx], value], dim=2)


class LayerIndexedCache(LayerCache, IndexedCache):
    """
    A cache for storing the key-value pairs for layers, in combination with the ability of standard KV cache.
    """
    def __init__(self) -> None:
        LayerCache.__init__(self)
        IndexedCache.__init__(self)


class LayerIndexedSinkCache(LayerCache, IndexedSinkCache):
    """
    A cache for storing the key-value pairs for layers, in combination with the ability of sink KV cache.
    """
    def __init__(self) -> None:
        LayerCache.__init__(self)
        IndexedSinkCache.__init__(self)


class LayerIndexedSlidingWindowCache(LayerCache, IndexedSlidingWindowCache):
    """
    A cache for storing the key-value pairs for layers, in combination with the ability of sliding window KV cache.
    """
    def __init__(self) -> None:
        LayerCache.__init__(self)
        IndexedSlidingWindowCache.__init__(self)


class LayerIndexedHybridCache(LayerCache, IndexedHybridCache):
    """
    A cache for storing the key-value pairs for layers, in combination with the ability of hybrid KV cache.
    """
    def __init__(self) -> None:
        LayerCache.__init__(self)
        IndexedHybridCache.__init__(self)


class AutoLayerCache(torch.nn.Module):
    """
    AutoLayerCache is a module that automatically creates a cache from an existing cache.
    """
    CACHE_MAPPING = {
        DynamicCache: LayerIndexedCache,
        SinkCache: LayerIndexedSinkCache,
        IndexedSlidingWindowCache: LayerIndexedSlidingWindowCache,
        IndexedHybridCache: LayerIndexedHybridCache,
    }

    def __init__(self, *args, **kwargs):
        raise RuntimeError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_cache(cache)` method."
        )

    @classmethod
    def from_cache(cls, cache: Cache, *args, **kwargs):
        """
        Create a new cache from an existing cache. The new cache will have the same type as the original cache.
        """
        cache_type = type(cache)
        if cache_type not in cls.CACHE_MAPPING:
            raise ValueError(f"Cache type {cache_type} is not supported by {cls.__name__}.")

        cache_class = cls.CACHE_MAPPING[cache_type]

        if hasattr(cache_class, "from_cache"):
            return cache_class.from_cache(cache, *args, **kwargs)
        else:
            # we init an empty cache and copy the attributes
            new_cache = cache_class(*args, **kwargs)
            new_cache.__dict__.update(cache.__dict__)
            return new_cache