File size: 18,452 Bytes
803ef9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from pathlib import Path
import argparse
import json
import math
import os
import random
import signal
import subprocess
import sys
import time
import numpy as np
import wandb

from PIL import Image, ImageOps, ImageFilter
from torch import nn, optim
import torch
import torchvision
import torchvision.transforms as transforms

parser = argparse.ArgumentParser(description='Barlow Twins Training')
parser.add_argument('data', type=Path, metavar='DIR',
                    help='path to dataset')
parser.add_argument('--workers', default=8, type=int, metavar='N',
                    help='number of data loader workers')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--batch-size', default=512, type=int, metavar='N',
                    help='mini-batch size')
parser.add_argument('--learning-rate-weights', default=0.2, type=float, metavar='LR',
                    help='base learning rate for weights')
parser.add_argument('--learning-rate-biases', default=0.0048, type=float, metavar='LR',
                    help='base learning rate for biases and batch norm parameters')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
                    help='weight decay')
parser.add_argument('--lambd', default=0.0051, type=float, metavar='L',
                    help='weight on off-diagonal terms')
parser.add_argument('--projector', default='8192-8192-8192', type=str,
                    metavar='MLP', help='projector MLP')
parser.add_argument('--print-freq', default=1, type=int, metavar='N',
                    help='print frequency')
parser.add_argument('--checkpoint-dir', default='/mnt/store/wbandar1/projects/ssl-aug-artifacts/', type=Path,
                    metavar='DIR', help='path to checkpoint directory')
parser.add_argument('--is_mixup', default='false', type=str,
                    metavar='L', help='mixup regularization', choices=['true', 'false'])
parser.add_argument('--lambda_mixup', default=0.1, type=float, metavar='L',
                    help='Hyperparamter for the regularization loss')

def main():
    args = parser.parse_args()
    args.is_mixup = args.is_mixup.lower() == 'true'
    args.ngpus_per_node = torch.cuda.device_count()

    run = wandb.init(project="Barlow-Twins-MixUp-ImageNet", config=args, dir='/mnt/store/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
    run_id = wandb.run.id
    args.checkpoint_dir=Path(os.path.join(args.checkpoint_dir, run_id))

    if 'SLURM_JOB_ID' in os.environ:
        # single-node and multi-node distributed training on SLURM cluster
        # requeue job on SLURM preemption
        signal.signal(signal.SIGUSR1, handle_sigusr1)
        signal.signal(signal.SIGTERM, handle_sigterm)
        # find a common host name on all nodes
        # assume scontrol returns hosts in the same order on all nodes
        cmd = 'scontrol show hostnames ' + os.getenv('SLURM_JOB_NODELIST')
        stdout = subprocess.check_output(cmd.split())
        host_name = stdout.decode().splitlines()[0]
        args.rank = int(os.getenv('SLURM_NODEID')) * args.ngpus_per_node
        args.world_size = int(os.getenv('SLURM_NNODES')) * args.ngpus_per_node
        args.dist_url = f'tcp://{host_name}:58472'
    else:
        # single-node distributed training
        args.rank = 0
        args.dist_url = 'tcp://localhost:58472'
        args.world_size = args.ngpus_per_node
    torch.multiprocessing.spawn(main_worker, (args,run,), args.ngpus_per_node)
    wandb.finish()


def main_worker(gpu, args, run):
    args.rank += gpu
    torch.distributed.init_process_group(
        backend='nccl', init_method=args.dist_url,
        world_size=args.world_size, rank=args.rank)

    if args.rank == 0:
        args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
        stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
        print(' '.join(sys.argv))
        print(' '.join(sys.argv), file=stats_file)

    torch.cuda.set_device(gpu)
    torch.backends.cudnn.benchmark = True

    model = BarlowTwins(args).cuda(gpu)
    model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
    param_weights = []
    param_biases = []
    for param in model.parameters():
        if param.ndim == 1:
            param_biases.append(param)
        else:
            param_weights.append(param)
    parameters = [{'params': param_weights}, {'params': param_biases}]
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
    optimizer = LARS(parameters, lr=0, weight_decay=args.weight_decay,
                     weight_decay_filter=True,
                     lars_adaptation_filter=True)

    # automatically resume from checkpoint if it exists
    if (args.checkpoint_dir / 'checkpoint.pth').is_file():
        ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
                          map_location='cpu')
        start_epoch = ckpt['epoch']
        model.load_state_dict(ckpt['model'])
        optimizer.load_state_dict(ckpt['optimizer'])
    else:
        start_epoch = 0

    dataset = torchvision.datasets.ImageFolder(args.data / 'train', Transform())
    sampler = torch.utils.data.distributed.DistributedSampler(dataset)
    assert args.batch_size % args.world_size == 0
    per_device_batch_size = args.batch_size // args.world_size
    loader = torch.utils.data.DataLoader(
        dataset, batch_size=per_device_batch_size, num_workers=args.workers,
        pin_memory=True, sampler=sampler)

    start_time = time.time()
    scaler = torch.cuda.amp.GradScaler(growth_interval=100, enabled=True)
    for epoch in range(start_epoch, args.epochs):
        sampler.set_epoch(epoch)
        for step, ((y1, y2), _) in enumerate(loader, start=epoch * len(loader)):
            y1 = y1.cuda(gpu, non_blocking=True)
            y2 = y2.cuda(gpu, non_blocking=True)
            adjust_learning_rate(args, optimizer, loader, step)
            mixup_loss_scale = adjust_mixup_scale(loader, step, args.lambda_mixup)
            optimizer.zero_grad()
            with torch.cuda.amp.autocast(enabled=True):
                loss_bt, loss_reg = model(y1, y2, args.is_mixup)
            loss_regs = mixup_loss_scale * loss_reg
            loss = loss_bt + loss_regs
            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
            if step % args.print_freq == 0:
                if args.rank == 0:
                    stats = dict(epoch=epoch, step=step,
                                 lr_weights=optimizer.param_groups[0]['lr'],
                                 lr_biases=optimizer.param_groups[1]['lr'],
                                 loss=loss.item(),
                                 time=int(time.time() - start_time))
                    print(json.dumps(stats))
                    print(json.dumps(stats), file=stats_file)
                    if args.is_mixup:
                        run.log(
                            {
                                "epoch": epoch,
                                "step": step,
                                "lr_weights": optimizer.param_groups[0]['lr'],
                                "lr_biases": optimizer.param_groups[1]['lr'],
                                "loss": loss.item(),
                                "loss_bt": loss_bt.item(),
                                "loss_reg(unscaled)": loss_reg.item(),
                                "reg_scale": mixup_loss_scale,
                                "loss_reg(scaled)": loss_regs.item(),
                                "time": int(time.time() - start_time)}
                                )
                    else:
                        run.log(
                            {
                                "epoch": epoch,
                                "step": step,
                                "lr_weights": optimizer.param_groups[0]['lr'],
                                "lr_biases": optimizer.param_groups[1]['lr'],
                                "loss": loss.item(),
                                "loss_bt": loss.item(),
                                "loss_reg(unscaled)": 0.,
                                "reg_scale": 0.,
                                "loss_reg(scaled)": 0.,
                                "time": int(time.time() - start_time)}
                                )
        if args.rank == 0:
            # save checkpoint
            state = dict(epoch=epoch + 1, model=model.state_dict(),
                         optimizer=optimizer.state_dict())
            torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
    if args.rank == 0:
        # save final model
        print("Saving final model ...")
        torch.save(model.module.backbone.state_dict(),
                   args.checkpoint_dir / 'resnet50.pth')
        print("Finished saving final model ...")


def adjust_learning_rate(args, optimizer, loader, step):
    max_steps = args.epochs * len(loader)
    warmup_steps = 10 * len(loader)
    base_lr = args.batch_size / 256
    if step < warmup_steps:
        lr = base_lr * step / warmup_steps
    else:
        step -= warmup_steps
        max_steps -= warmup_steps
        q = 0.5 * (1 + math.cos(math.pi * step / max_steps))
        end_lr = base_lr * 0.001
        lr = base_lr * q + end_lr * (1 - q)
    optimizer.param_groups[0]['lr'] = lr * args.learning_rate_weights
    optimizer.param_groups[1]['lr'] = lr * args.learning_rate_biases

def adjust_mixup_scale(loader, step, lambda_mixup):
    warmup_steps = 10 * len(loader)
    if step < warmup_steps:
        return lambda_mixup * step / warmup_steps
    else:
        return lambda_mixup

def handle_sigusr1(signum, frame):
    os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
    exit()


def handle_sigterm(signum, frame):
    pass


def off_diagonal(x):
    # return a flattened view of the off-diagonal elements of a square matrix
    n, m = x.shape
    assert n == m
    return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()


class BarlowTwins(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.backbone = torchvision.models.resnet50(zero_init_residual=True)
        self.backbone.fc = nn.Identity()

        # projector
        sizes = [2048] + list(map(int, args.projector.split('-')))
        layers = []
        for i in range(len(sizes) - 2):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
            layers.append(nn.BatchNorm1d(sizes[i + 1]))
            layers.append(nn.ReLU(inplace=True))
        layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
        self.projector = nn.Sequential(*layers)

        # normalization layer for the representations z1 and z2
        # self.bn = nn.BatchNorm1d(sizes[-1], affine=False)

    # def forward(self, y1, y2):
    #     z1 = self.projector(self.backbone(y1))
    #     z2 = self.projector(self.backbone(y2))

    #     # empirical cross-correlation matrix
    #     c = self.bn(z1).T @ self.bn(z2)

    #     # sum the cross-correlation matrix between all gpus
    #     c.div_(self.args.batch_size)
    #     torch.distributed.all_reduce(c)

    #     on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
    #     off_diag = off_diagonal(c).pow_(2).sum()
    #     loss = on_diag + self.args.lambd * off_diag
    #     return loss

    def forward(self, y1, y2, is_mixup):
        batch_size = y1.shape[0]

        ### original barlow twins ###
        z1 = self.projector(self.backbone(y1))
        z2 = self.projector(self.backbone(y2))

        # normilization
        z1 = (z1 - z1.mean(dim=0)) / z1.std(dim=0)
        z2 = (z2 - z2.mean(dim=0)) / z2.std(dim=0)

        # empirical cross-correlation matrix
        c = z1.T @ z2

        # sum the cross-correlation matrix between all gpus
        c.div_(self.args.batch_size)
        torch.distributed.all_reduce(c)

        on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
        off_diag = off_diagonal(c).pow_(2).sum()
        loss = on_diag + self.args.lambd * off_diag

        if is_mixup:
            ##############################################
            ### mixup regularization: Implementation 1 ###
            ##############################################
            
            # index = torch.randperm(batch_size).cuda(non_blocking=True)
            # alpha = np.random.beta(1.0, 1.0)
            # ym = alpha * y1 + (1. - alpha) * y2[index, :]
            # zm = self.projector(self.backbone(ym))

            # # normilization
            # zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)

            # # cc
            # cc_m_1 = zm.T @ z1
            # cc_m_1.div_(batch_size)
            # cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
            # cc_m_1_gt.div_(batch_size)

            # cc_m_2 = zm.T @ z2
            # cc_m_2.div_(batch_size)
            # cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
            # cc_m_2_gt.div_(batch_size)

            # # mixup reg. loss
            # lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
            
            ##############################################
            ### mixup regularization: Implementation 2 ###
            ##############################################
            index = torch.randperm(batch_size).cuda(non_blocking=True)
            alpha = np.random.beta(1.0, 1.0)
            ym = alpha * y1 + (1. - alpha) * y2[index, :]
            zm = self.projector(self.backbone(ym))

            # normilization
            zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)

            # cc
            cc_m_1 = zm.T @ z1
            cc_m_1.div_(self.args.batch_size)
            cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
            cc_m_1_gt.div_(self.args.batch_size)

            cc_m_2 = zm.T @ z2
            cc_m_2.div_(self.args.batch_size)
            cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
            cc_m_2_gt.div_(self.args.batch_size)

            # gathering all cc
            torch.distributed.all_reduce(cc_m_1)
            torch.distributed.all_reduce(cc_m_1_gt)
            torch.distributed.all_reduce(cc_m_2)
            torch.distributed.all_reduce(cc_m_2_gt)

            # mixup reg. loss
            lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
        else:
            lossm = torch.zeros(1)
        return loss, lossm

class LARS(optim.Optimizer):
    def __init__(self, params, lr, weight_decay=0, momentum=0.9, eta=0.001,
                 weight_decay_filter=False, lars_adaptation_filter=False):
        defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
                        eta=eta, weight_decay_filter=weight_decay_filter,
                        lars_adaptation_filter=lars_adaptation_filter)
        super().__init__(params, defaults)


    def exclude_bias_and_norm(self, p):
        return p.ndim == 1

    @torch.no_grad()
    def step(self):
        for g in self.param_groups:
            for p in g['params']:
                dp = p.grad

                if dp is None:
                    continue

                if not g['weight_decay_filter'] or not self.exclude_bias_and_norm(p):
                    dp = dp.add(p, alpha=g['weight_decay'])

                if not g['lars_adaptation_filter'] or not self.exclude_bias_and_norm(p):
                    param_norm = torch.norm(p)
                    update_norm = torch.norm(dp)
                    one = torch.ones_like(param_norm)
                    q = torch.where(param_norm > 0.,
                                    torch.where(update_norm > 0,
                                                (g['eta'] * param_norm / update_norm), one), one)
                    dp = dp.mul(q)

                param_state = self.state[p]
                if 'mu' not in param_state:
                    param_state['mu'] = torch.zeros_like(p)
                mu = param_state['mu']
                mu.mul_(g['momentum']).add_(dp)

                p.add_(mu, alpha=-g['lr'])



class GaussianBlur(object):
    def __init__(self, p):
        self.p = p

    def __call__(self, img):
        if random.random() < self.p:
            sigma = random.random() * 1.9 + 0.1
            return img.filter(ImageFilter.GaussianBlur(sigma))
        else:
            return img


class Solarization(object):
    def __init__(self, p):
        self.p = p

    def __call__(self, img):
        if random.random() < self.p:
            return ImageOps.solarize(img)
        else:
            return img


class Transform:
    def __init__(self):
        self.transform = transforms.Compose([
            transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply(
                [transforms.ColorJitter(brightness=0.4, contrast=0.4,
                                        saturation=0.2, hue=0.1)],
                p=0.8
            ),
            transforms.RandomGrayscale(p=0.2),
            GaussianBlur(p=1.0),
            Solarization(p=0.0),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])
        self.transform_prime = transforms.Compose([
            transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply(
                [transforms.ColorJitter(brightness=0.4, contrast=0.4,
                                        saturation=0.2, hue=0.1)],
                p=0.8
            ),
            transforms.RandomGrayscale(p=0.2),
            GaussianBlur(p=0.1),
            Solarization(p=0.2),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

    def __call__(self, x):
        y1 = self.transform(x)
        y2 = self.transform_prime(x)
        return y1, y2


if __name__ == '__main__':
    main()