File size: 18,452 Bytes
803ef9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import argparse
import json
import math
import os
import random
import signal
import subprocess
import sys
import time
import numpy as np
import wandb
from PIL import Image, ImageOps, ImageFilter
from torch import nn, optim
import torch
import torchvision
import torchvision.transforms as transforms
parser = argparse.ArgumentParser(description='Barlow Twins Training')
parser.add_argument('data', type=Path, metavar='DIR',
help='path to dataset')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=512, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--learning-rate-weights', default=0.2, type=float, metavar='LR',
help='base learning rate for weights')
parser.add_argument('--learning-rate-biases', default=0.0048, type=float, metavar='LR',
help='base learning rate for biases and batch norm parameters')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--lambd', default=0.0051, type=float, metavar='L',
help='weight on off-diagonal terms')
parser.add_argument('--projector', default='8192-8192-8192', type=str,
metavar='MLP', help='projector MLP')
parser.add_argument('--print-freq', default=1, type=int, metavar='N',
help='print frequency')
parser.add_argument('--checkpoint-dir', default='/mnt/store/wbandar1/projects/ssl-aug-artifacts/', type=Path,
metavar='DIR', help='path to checkpoint directory')
parser.add_argument('--is_mixup', default='false', type=str,
metavar='L', help='mixup regularization', choices=['true', 'false'])
parser.add_argument('--lambda_mixup', default=0.1, type=float, metavar='L',
help='Hyperparamter for the regularization loss')
def main():
args = parser.parse_args()
args.is_mixup = args.is_mixup.lower() == 'true'
args.ngpus_per_node = torch.cuda.device_count()
run = wandb.init(project="Barlow-Twins-MixUp-ImageNet", config=args, dir='/mnt/store/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
args.checkpoint_dir=Path(os.path.join(args.checkpoint_dir, run_id))
if 'SLURM_JOB_ID' in os.environ:
# single-node and multi-node distributed training on SLURM cluster
# requeue job on SLURM preemption
signal.signal(signal.SIGUSR1, handle_sigusr1)
signal.signal(signal.SIGTERM, handle_sigterm)
# find a common host name on all nodes
# assume scontrol returns hosts in the same order on all nodes
cmd = 'scontrol show hostnames ' + os.getenv('SLURM_JOB_NODELIST')
stdout = subprocess.check_output(cmd.split())
host_name = stdout.decode().splitlines()[0]
args.rank = int(os.getenv('SLURM_NODEID')) * args.ngpus_per_node
args.world_size = int(os.getenv('SLURM_NNODES')) * args.ngpus_per_node
args.dist_url = f'tcp://{host_name}:58472'
else:
# single-node distributed training
args.rank = 0
args.dist_url = 'tcp://localhost:58472'
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,run,), args.ngpus_per_node)
wandb.finish()
def main_worker(gpu, args, run):
args.rank += gpu
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.rank == 0:
args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
print(' '.join(sys.argv))
print(' '.join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model = BarlowTwins(args).cuda(gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [{'params': param_weights}, {'params': param_biases}]
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
optimizer = LARS(parameters, lr=0, weight_decay=args.weight_decay,
weight_decay_filter=True,
lars_adaptation_filter=True)
# automatically resume from checkpoint if it exists
if (args.checkpoint_dir / 'checkpoint.pth').is_file():
ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
map_location='cpu')
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
else:
start_epoch = 0
dataset = torchvision.datasets.ImageFolder(args.data / 'train', Transform())
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
assert args.batch_size % args.world_size == 0
per_device_batch_size = args.batch_size // args.world_size
loader = torch.utils.data.DataLoader(
dataset, batch_size=per_device_batch_size, num_workers=args.workers,
pin_memory=True, sampler=sampler)
start_time = time.time()
scaler = torch.cuda.amp.GradScaler(growth_interval=100, enabled=True)
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(epoch)
for step, ((y1, y2), _) in enumerate(loader, start=epoch * len(loader)):
y1 = y1.cuda(gpu, non_blocking=True)
y2 = y2.cuda(gpu, non_blocking=True)
adjust_learning_rate(args, optimizer, loader, step)
mixup_loss_scale = adjust_mixup_scale(loader, step, args.lambda_mixup)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=True):
loss_bt, loss_reg = model(y1, y2, args.is_mixup)
loss_regs = mixup_loss_scale * loss_reg
loss = loss_bt + loss_regs
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if step % args.print_freq == 0:
if args.rank == 0:
stats = dict(epoch=epoch, step=step,
lr_weights=optimizer.param_groups[0]['lr'],
lr_biases=optimizer.param_groups[1]['lr'],
loss=loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
if args.is_mixup:
run.log(
{
"epoch": epoch,
"step": step,
"lr_weights": optimizer.param_groups[0]['lr'],
"lr_biases": optimizer.param_groups[1]['lr'],
"loss": loss.item(),
"loss_bt": loss_bt.item(),
"loss_reg(unscaled)": loss_reg.item(),
"reg_scale": mixup_loss_scale,
"loss_reg(scaled)": loss_regs.item(),
"time": int(time.time() - start_time)}
)
else:
run.log(
{
"epoch": epoch,
"step": step,
"lr_weights": optimizer.param_groups[0]['lr'],
"lr_biases": optimizer.param_groups[1]['lr'],
"loss": loss.item(),
"loss_bt": loss.item(),
"loss_reg(unscaled)": 0.,
"reg_scale": 0.,
"loss_reg(scaled)": 0.,
"time": int(time.time() - start_time)}
)
if args.rank == 0:
# save checkpoint
state = dict(epoch=epoch + 1, model=model.state_dict(),
optimizer=optimizer.state_dict())
torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
if args.rank == 0:
# save final model
print("Saving final model ...")
torch.save(model.module.backbone.state_dict(),
args.checkpoint_dir / 'resnet50.pth')
print("Finished saving final model ...")
def adjust_learning_rate(args, optimizer, loader, step):
max_steps = args.epochs * len(loader)
warmup_steps = 10 * len(loader)
base_lr = args.batch_size / 256
if step < warmup_steps:
lr = base_lr * step / warmup_steps
else:
step -= warmup_steps
max_steps -= warmup_steps
q = 0.5 * (1 + math.cos(math.pi * step / max_steps))
end_lr = base_lr * 0.001
lr = base_lr * q + end_lr * (1 - q)
optimizer.param_groups[0]['lr'] = lr * args.learning_rate_weights
optimizer.param_groups[1]['lr'] = lr * args.learning_rate_biases
def adjust_mixup_scale(loader, step, lambda_mixup):
warmup_steps = 10 * len(loader)
if step < warmup_steps:
return lambda_mixup * step / warmup_steps
else:
return lambda_mixup
def handle_sigusr1(signum, frame):
os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
exit()
def handle_sigterm(signum, frame):
pass
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
class BarlowTwins(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.backbone = torchvision.models.resnet50(zero_init_residual=True)
self.backbone.fc = nn.Identity()
# projector
sizes = [2048] + list(map(int, args.projector.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
# self.bn = nn.BatchNorm1d(sizes[-1], affine=False)
# def forward(self, y1, y2):
# z1 = self.projector(self.backbone(y1))
# z2 = self.projector(self.backbone(y2))
# # empirical cross-correlation matrix
# c = self.bn(z1).T @ self.bn(z2)
# # sum the cross-correlation matrix between all gpus
# c.div_(self.args.batch_size)
# torch.distributed.all_reduce(c)
# on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
# off_diag = off_diagonal(c).pow_(2).sum()
# loss = on_diag + self.args.lambd * off_diag
# return loss
def forward(self, y1, y2, is_mixup):
batch_size = y1.shape[0]
### original barlow twins ###
z1 = self.projector(self.backbone(y1))
z2 = self.projector(self.backbone(y2))
# normilization
z1 = (z1 - z1.mean(dim=0)) / z1.std(dim=0)
z2 = (z2 - z2.mean(dim=0)) / z2.std(dim=0)
# empirical cross-correlation matrix
c = z1.T @ z2
# sum the cross-correlation matrix between all gpus
c.div_(self.args.batch_size)
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.args.lambd * off_diag
if is_mixup:
##############################################
### mixup regularization: Implementation 1 ###
##############################################
# index = torch.randperm(batch_size).cuda(non_blocking=True)
# alpha = np.random.beta(1.0, 1.0)
# ym = alpha * y1 + (1. - alpha) * y2[index, :]
# zm = self.projector(self.backbone(ym))
# # normilization
# zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)
# # cc
# cc_m_1 = zm.T @ z1
# cc_m_1.div_(batch_size)
# cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
# cc_m_1_gt.div_(batch_size)
# cc_m_2 = zm.T @ z2
# cc_m_2.div_(batch_size)
# cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
# cc_m_2_gt.div_(batch_size)
# # mixup reg. loss
# lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
##############################################
### mixup regularization: Implementation 2 ###
##############################################
index = torch.randperm(batch_size).cuda(non_blocking=True)
alpha = np.random.beta(1.0, 1.0)
ym = alpha * y1 + (1. - alpha) * y2[index, :]
zm = self.projector(self.backbone(ym))
# normilization
zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)
# cc
cc_m_1 = zm.T @ z1
cc_m_1.div_(self.args.batch_size)
cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
cc_m_1_gt.div_(self.args.batch_size)
cc_m_2 = zm.T @ z2
cc_m_2.div_(self.args.batch_size)
cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
cc_m_2_gt.div_(self.args.batch_size)
# gathering all cc
torch.distributed.all_reduce(cc_m_1)
torch.distributed.all_reduce(cc_m_1_gt)
torch.distributed.all_reduce(cc_m_2)
torch.distributed.all_reduce(cc_m_2_gt)
# mixup reg. loss
lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
else:
lossm = torch.zeros(1)
return loss, lossm
class LARS(optim.Optimizer):
def __init__(self, params, lr, weight_decay=0, momentum=0.9, eta=0.001,
weight_decay_filter=False, lars_adaptation_filter=False):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
eta=eta, weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter)
super().__init__(params, defaults)
def exclude_bias_and_norm(self, p):
return p.ndim == 1
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g['params']:
dp = p.grad
if dp is None:
continue
if not g['weight_decay_filter'] or not self.exclude_bias_and_norm(p):
dp = dp.add(p, alpha=g['weight_decay'])
if not g['lars_adaptation_filter'] or not self.exclude_bias_and_norm(p):
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(param_norm > 0.,
torch.where(update_norm > 0,
(g['eta'] * param_norm / update_norm), one), one)
dp = dp.mul(q)
param_state = self.state[p]
if 'mu' not in param_state:
param_state['mu'] = torch.zeros_like(p)
mu = param_state['mu']
mu.mul_(g['momentum']).add_(dp)
p.add_(mu, alpha=-g['lr'])
class GaussianBlur(object):
def __init__(self, p):
self.p = p
def __call__(self, img):
if random.random() < self.p:
sigma = random.random() * 1.9 + 0.1
return img.filter(ImageFilter.GaussianBlur(sigma))
else:
return img
class Solarization(object):
def __init__(self, p):
self.p = p
def __call__(self, img):
if random.random() < self.p:
return ImageOps.solarize(img)
else:
return img
class Transform:
def __init__(self):
self.transform = transforms.Compose([
transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.4, contrast=0.4,
saturation=0.2, hue=0.1)],
p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=1.0),
Solarization(p=0.0),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.transform_prime = transforms.Compose([
transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.4, contrast=0.4,
saturation=0.2, hue=0.1)],
p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=0.1),
Solarization(p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def __call__(self, x):
y1 = self.transform(x)
y2 = self.transform_prime(x)
return y1, y2
if __name__ == '__main__':
main() |