wenqiglantz commited on
Commit
529df44
1 Parent(s): 4f21892

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +101 -0
readme_template.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - ljspeech
8
+ thumbnail: null
9
+ tags:
10
+ - text-to-speech
11
+ - speech
12
+ - audio
13
+ - Transformer
14
+ - NeMo
15
+ - pytorch
16
+ - Riva
17
+ model-index:
18
+ - name: tts_en_fastpitch
19
+ results: []
20
+
21
+ ---
22
+
23
+
24
+ ## Model Overview
25
+
26
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
27
+
28
+ ## NVIDIA NeMo: Training
29
+
30
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
31
+ ```
32
+ pip install nemo_toolkit['all']
33
+ ```
34
+
35
+ ## How to Use this Model
36
+
37
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```python
42
+ import nemo.collections.asr as nemo_tts
43
+ asr_model = nemo_tts.models.FastPitchModel.from_pretrained("wenqiglantz/tts_en_fastpitch")
44
+ ```
45
+
46
+ ### Transcribing using Python
47
+ First, let's get a sample
48
+ ```
49
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
50
+ ```
51
+ Then simply do:
52
+ ```
53
+ asr_model.transcribe(['2086-149220-0033.wav'])
54
+ ```
55
+
56
+ ### Transcribing many audio files
57
+
58
+ ```shell
59
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="wenqiglantz/tts_en_fastpitch" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
60
+ ```
61
+
62
+ ### Input
63
+
64
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
65
+
66
+ ### Output
67
+
68
+ This model provides transcribed speech as a string for a given audio sample.
69
+
70
+ ## Model Architecture
71
+
72
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
73
+
74
+ ## Training
75
+
76
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
77
+
78
+ ### Datasets
79
+
80
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
81
+
82
+ ## Performance
83
+
84
+ <LIST THE SCORES OF THE MODEL -
85
+ OR
86
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
87
+
88
+ ## Limitations
89
+
90
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
91
+
92
+ Eg:
93
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
94
+
95
+
96
+ ## References
97
+
98
+ <ADD ANY REFERENCES HERE AS NEEDED>
99
+
100
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
101
+