wenkai commited on
Commit
a54b84f
·
verified ·
1 Parent(s): f0cdb9b

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -78
README.md DELETED
@@ -1,78 +0,0 @@
1
- ## Introduction
2
- <p align="center">
3
- <br>
4
- <img src="assets/FAPM.png"/>
5
- <br>
6
- <p>
7
-
8
- Huggingface repo: *https://huggingface.co/wenkai/FAPM/*
9
-
10
- ## Installation
11
-
12
- 1. (Optional) Creating conda environment
13
-
14
- ```bash
15
- conda create -n lavis python=3.8
16
- conda activate lavis
17
- ```
18
-
19
- 2. for development, you may build from source
20
-
21
- ```bash
22
- git clone https://github.com/xiangwenkai/FAPM.git
23
- cd FAPM
24
- pip install -e .
25
-
26
- pip install Biopython
27
- pip install fair-esm
28
- ```
29
-
30
- ### Datasets
31
- #### 1.raw dataset
32
- Raw data are avaliable at *https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2023_04/knowledgebase/*, this file is very large and need to be processed to get its name, sequence, GO label, function description and prompt.
33
- The domain level protein dataset we used are avaliable at *https://ftp.ebi.ac.uk/pub/databases/interpro/releases/95.0/protein2ipr.dat.gz*
34
- In this respository, We provide the experimental train/val/test sets of Swiss-Prot, which are avaliable at data/swissprot_exp
35
- #### 2.ESM2 embeddings
36
- Source code for ESM2 embeddings generation: *https://github.com/facebookresearch/esm*
37
- The generation command:
38
- ```bash
39
- python esm_scripts/extract.py esm2_t33_3B_UR50D you_path/protein.fasta you_path_to_save_embedding_files --repr_layers 36 --truncation_seq_length 1024 --include per_tok
40
- ```
41
- The default path to save embedding files in this respository is **data/emb_esm2_3b**
42
-
43
- ## Pretraining language models
44
- Source: *https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B*
45
-
46
- ## Training
47
- data config: lavis/configs/datasets/protein/GO_defaults_cap.yaml
48
- stage1 config: lavis/projects/blip2/train/protein_pretrain_stage1.yaml
49
- stage1 training command: run_scripts/blip2/train/protein_pretrain_domain_stage1.sh
50
- stage2 config: lavis/projects/blip2/train/protein_pretrain_stage2.yaml
51
- stage2 training/finetuning command: run_scripts/blip2/train/protein_pretrain_domain_stage2.sh
52
-
53
- ## Trained models
54
- The models are avaliable at **https://huggingface.co/wenkai/FAPM/tree/main/model**
55
- You can also download our trained models from google drive: *https://drive.google.com/drive/folders/1aA0eSYxNw3DvrU5GU1Cu-4q2kIxxAGSE?usp=drive_link*
56
-
57
- ## Testing
58
- config: lavis/projects/blip2/eval/caption_protein_eval.yaml
59
- command: run_scripts/blip2/eval/eval_cap_protein.sh
60
-
61
- ## Inference example
62
- ```
63
- python FAPM_inference.py \
64
- --model_path model/checkpoint_mf2.pth \
65
- --example_path data/emb_esm2_3b/P18281.pt \
66
- --device cuda \
67
- --prompt Acanthamoeba
68
- ```
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-