wdika commited on
Commit
85d772b
·
1 Parent(s): abb4c05

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +154 -0
readme_template.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - StanfordKnees2019
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - RIM
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Recurrent Inference Machines (RIM) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_RIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: CIRIM
57
+ recurrent_layer: GRU
58
+ conv_filters:
59
+ - 64
60
+ - 64
61
+ - 2
62
+ conv_kernels:
63
+ - 5
64
+ - 3
65
+ - 3
66
+ conv_dilations:
67
+ - 1
68
+ - 2
69
+ - 1
70
+ conv_bias:
71
+ - true
72
+ - true
73
+ - false
74
+ recurrent_filters:
75
+ - 64
76
+ - 64
77
+ - 0
78
+ recurrent_kernels:
79
+ - 1
80
+ - 1
81
+ - 0
82
+ recurrent_dilations:
83
+ - 1
84
+ - 1
85
+ - 0
86
+ recurrent_bias:
87
+ - true
88
+ - true
89
+ - false
90
+ depth: 2
91
+ time_steps: 8
92
+ conv_dim: 2
93
+ num_cascades: 1
94
+ no_dc: true
95
+ keep_prediction: true
96
+ accumulate_predictions: true
97
+ dimensionality: 2
98
+ reconstruction_loss:
99
+ wasserstein: 1.0
100
+ ```
101
+
102
+ ## Training
103
+ ```base
104
+ optim:
105
+ name: adamw
106
+ lr: 1e-4
107
+ betas:
108
+ - 0.9
109
+ - 0.999
110
+ weight_decay: 0.0
111
+ sched:
112
+ name: InverseSquareRootAnnealing
113
+ min_lr: 0.0
114
+ last_epoch: -1
115
+ warmup_ratio: 0.1
116
+
117
+ trainer:
118
+ strategy: ddp_find_unused_parameters_false
119
+ accelerator: gpu
120
+ devices: 1
121
+ num_nodes: 1
122
+ max_epochs: 20
123
+ precision: 16-mixed
124
+ enable_checkpointing: false
125
+ logger: false
126
+ log_every_n_steps: 50
127
+ check_val_every_n_epoch: -1
128
+ max_steps: -1
129
+ ```
130
+
131
+ ## Performance
132
+
133
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
134
+
135
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
136
+
137
+ Results
138
+ -------
139
+
140
+ Evaluation against SENSE targets
141
+ --------------------------------
142
+ 12x: MSE = 0.001278 +/- 0.006025 NMSE = 0.04409 +/- 0.1243 PSNR = 31.53 +/- 6.786 SSIM = 0.7692 +/- 0.3035
143
+
144
+
145
+ ## Limitations
146
+
147
+ This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
148
+
149
+
150
+ ## References
151
+
152
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
153
+
154
+ [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1