wdika commited on
Commit
350f016
·
1 Parent(s): 7b25e7c

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +130 -0
readme_template.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - StanfordKnees2019
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - KIKINet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ KIKINet for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: KIKINet
57
+ num_iter: 2
58
+ kspace_model_architecture: UNET
59
+ kspace_in_channels: 2
60
+ kspace_out_channels: 2
61
+ kspace_unet_num_filters: 16
62
+ kspace_unet_num_pool_layers: 2
63
+ kspace_unet_dropout_probability: 0.0
64
+ kspace_unet_padding_size: 11
65
+ kspace_unet_normalize: true
66
+ imspace_model_architecture: UNET
67
+ imspace_in_channels: 2
68
+ imspace_unet_num_filters: 16
69
+ imspace_unet_num_pool_layers: 2
70
+ imspace_unet_dropout_probability: 0.0
71
+ imspace_unet_padding_size: 11
72
+ imspace_unet_normalize: true
73
+ dimensionality: 2
74
+ reconstruction_loss:
75
+ wasserstein: 1.0
76
+ ```
77
+
78
+ ## Training
79
+ ```base
80
+ optim:
81
+ name: adamw
82
+ lr: 1e-4
83
+ betas:
84
+ - 0.9
85
+ - 0.999
86
+ weight_decay: 0.0
87
+ sched:
88
+ name: InverseSquareRootAnnealing
89
+ min_lr: 0.0
90
+ last_epoch: -1
91
+ warmup_ratio: 0.1
92
+
93
+ trainer:
94
+ strategy: ddp_find_unused_parameters_false
95
+ accelerator: gpu
96
+ devices: 1
97
+ num_nodes: 1
98
+ max_epochs: 20
99
+ precision: 16-mixed
100
+ enable_checkpointing: false
101
+ logger: false
102
+ log_every_n_steps: 50
103
+ check_val_every_n_epoch: -1
104
+ max_steps: -1
105
+ ```
106
+
107
+ ## Performance
108
+
109
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
110
+
111
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
112
+
113
+ Results
114
+ -------
115
+
116
+ Evaluation against SENSE targets
117
+ --------------------------------
118
+ 12x: MSE = 0.0025 +/- 0.00671 NMSE = 0.1052 +/- 0.1784 PSNR = 27.33 +/- 5.552 SSIM = 0.6587 +/- 0.2413
119
+
120
+
121
+ ## Limitations
122
+
123
+ This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
124
+
125
+
126
+ ## References
127
+
128
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
129
+
130
+ [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1