File size: 4,061 Bytes
37cb2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- CC359
thumbnail: null
tags:
- image-reconstruction
- JointICNet
- ATOMMIC
- pytorch
model-index:
- name: REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
  results: []

---


## Model Overview

Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (JointICNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.


## ATOMMIC: Training

To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```

## How to Use this Model

The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).

### Automatically instantiate the model

```base
pretrained: true
checkpoint: https://huggingface.co/wdika/REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
mode: test
```

### Usage

You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.


## Model Architecture
```base
model:
  model_name: JointICNet
  num_iter: 2
  kspace_unet_num_filters: 16
  kspace_unet_num_pool_layers: 2
  kspace_unet_dropout_probability: 0.0
  kspace_unet_padding_size: 11
  kspace_unet_normalize: true
  imspace_unet_num_filters: 16
  imspace_unet_num_pool_layers: 2
  imspace_unet_dropout_probability: 0.0
  imspace_unet_padding_size: 11
  imspace_unet_normalize: true
  sens_unet_num_filters: 16
  sens_unet_num_pool_layers: 2
  sens_unet_dropout_probability: 0.0
  sens_unet_padding_size: 11
  sens_unet_normalize: true
  dimensionality: 2
```

## Training
```base
  optim:
    name: adamw
    lr: 1e-4
    betas:
      - 0.9
      - 0.999
    weight_decay: 0.0
    sched:
        name: CosineAnnealing
        min_lr: 0.0
        last_epoch: -1
        warmup_ratio: 0.1

trainer:
  strategy: ddp_find_unused_parameters_false
  accelerator: gpu
  devices: 1
  num_nodes: 1
  max_epochs: 20
  precision: 16-mixed
  enable_checkpointing: false
  logger: false
  log_every_n_steps: 50
  check_val_every_n_epoch: -1
  max_steps: -1
```

## Performance

To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.

Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.

Results
-------

Evaluation against RSS targets
------------------------------
5x: MSE = 0.001306 +/- 0.001178 NMSE = 0.02018 +/- 0.02082 PSNR = 29.28 +/- 3.99 SSIM = 0.8719 +/- 0.06531

10x: MSE = 0.002043 +/- 0.001908 NMSE = 0.03181 +/- 0.03297 PSNR = 27.36 +/- 4.101 SSIM = 0.8278 +/- 0.0864


## Limitations

This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.


## References

[1] [ATOMMIC](https://github.com/wdika/atommic)

[2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186