File size: 4,127 Bytes
253de7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- CC359
thumbnail: null
tags:
- image-reconstruction
- CIRIM
- ATOMMIC
- pytorch
model-index:
- name: REC_CIRIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
results: []
---
## Model Overview
Cascades of Independently Recurrent Inference Machines (CIRIM) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
## ATOMMIC: Training
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```
## How to Use this Model
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
### Automatically instantiate the model
```base
pretrained: true
checkpoint: https://huggingface.co/wdika/REC_CIRIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_CIRIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
mode: test
```
### Usage
You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
## Model Architecture
```base
model:
model_name: CIRIM
recurrent_layer: IndRNN
conv_filters:
- 128
- 128
- 2
conv_kernels:
- 5
- 3
- 3
conv_dilations:
- 1
- 2
- 1
conv_bias:
- true
- true
- false
recurrent_filters:
- 128
- 128
- 0
recurrent_kernels:
- 1
- 1
- 0
recurrent_dilations:
- 1
- 1
- 0
recurrent_bias:
- true
- true
- false
depth: 2
time_steps: 8
conv_dim: 2
num_cascades: 5
no_dc: true
keep_prediction: true
accumulate_predictions: true
dimensionality: 2
reconstruction_loss:
l1: 0.1
ssim: 0.9
estimate_coil_sensitivity_maps_with_nn: true
```
## Training
```base
optim:
name: adamw
lr: 1e-4
betas:
- 0.9
- 0.999
weight_decay: 0.0
sched:
name: CosineAnnealing
min_lr: 0.0
last_epoch: -1
warmup_ratio: 0.1
trainer:
strategy: ddp_find_unused_parameters_false
accelerator: gpu
devices: 1
num_nodes: 1
max_epochs: 20
precision: 16-mixed
enable_checkpointing: false
logger: false
log_every_n_steps: 50
check_val_every_n_epoch: -1
max_steps: -1
```
## Performance
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
Results
-------
Evaluation against RSS targets
------------------------------
5x: MSE = 0.001477 +/- 0.001443 NMSE = 0.02306 +/- 0.02867 PSNR = 28.79 +/- 4.234 SSIM = 0.8575 +/- 0.07448
10x: MSE = 0.002279 +/- 0.00227 NMSE = 0.03609 +/- 0.04478 PSNR = 26.92 +/- 4.357 SSIM = 0.816 +/- 0.09436
## Limitations
This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
## References
[1] [ATOMMIC](https://github.com/wdika/atommic)
[2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186 |