File size: 1,391 Bytes
97d1c79
 
 
 
 
 
 
 
 
 
 
 
 
 
a08c9c5
97d1c79
a08c9c5
97d1c79
a08c9c5
97d1c79
a08c9c5
97d1c79
a08c9c5
97d1c79
a08c9c5
 
97d1c79
a08c9c5
97d1c79
a08c9c5
97d1c79
a08c9c5
 
97d1c79
a08c9c5
97d1c79
a08c9c5
 
97d1c79
a08c9c5
97d1c79
a08c9c5
 
97d1c79
a08c9c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: cc0-1.0
library_name: transformers
pipeline_tag: text-generation
tags:
  - text-generation
  - causal-lm
  - mistral
  - fine-tuned
language: en
base_model: mistralai/Mistral-7B-v0.1
---


# Mistral-7B Fine-Tuned on Nouns DAO Comments

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on a custom dataset of Nouns DAO comments.

## Model Description

The model has been fine-tuned to generate comments by Nouns DAO members on proposals, focusing on community discussions and insights.

## Intended Use

- **Primary Use Case:** Generating realistic DAO member comments for proposals.
- **Languages Supported:** English (en).

## How to Use

You can use this model with the Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "your_username/your_model_name"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" or "cpu")

prompt = "The following is a comment by a Nouns DAO member on the proposal to gift 1000 glasses to kids in need:"

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, repetition_penalty=1.15, temperature=0.7, top_p=0.9)

generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)