File size: 1,391 Bytes
97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 97d1c79 a08c9c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: cc0-1.0
library_name: transformers
pipeline_tag: text-generation
tags:
- text-generation
- causal-lm
- mistral
- fine-tuned
language: en
base_model: mistralai/Mistral-7B-v0.1
---
# Mistral-7B Fine-Tuned on Nouns DAO Comments
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on a custom dataset of Nouns DAO comments.
## Model Description
The model has been fine-tuned to generate comments by Nouns DAO members on proposals, focusing on community discussions and insights.
## Intended Use
- **Primary Use Case:** Generating realistic DAO member comments for proposals.
- **Languages Supported:** English (en).
## How to Use
You can use this model with the Transformers library:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "your_username/your_model_name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" or "cpu")
prompt = "The following is a comment by a Nouns DAO member on the proposal to gift 1000 glasses to kids in need:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, repetition_penalty=1.15, temperature=0.7, top_p=0.9)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
|