Upload folder using huggingface_hub
Browse files- efficient_net/config.json +1 -1
- generator/config.json +1 -1
- model_index.json +2 -2
- scheduler/scheduler_config.json +4 -2
- vqgan/config.json +2 -2
efficient_net/config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_class_name": "EfficientNetEncoder",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"c_latent": 16,
|
5 |
"effnet": "efficientnet_v2_s"
|
6 |
}
|
|
|
1 |
{
|
2 |
"_class_name": "EfficientNetEncoder",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
"c_latent": 16,
|
5 |
"effnet": "efficientnet_v2_s"
|
6 |
}
|
generator/config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_class_name": "DiffNeXt",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"blocks": [
|
5 |
4,
|
6 |
4,
|
|
|
1 |
{
|
2 |
"_class_name": "DiffNeXt",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
"blocks": [
|
5 |
4,
|
6 |
4,
|
model_index.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_class_name": "WuerstchenGeneratorPipeline",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"efficient_net": [
|
5 |
"wuerstchen",
|
6 |
"EfficientNetEncoder"
|
@@ -15,6 +15,6 @@
|
|
15 |
],
|
16 |
"vqgan": [
|
17 |
"diffusers",
|
18 |
-
"
|
19 |
]
|
20 |
}
|
|
|
1 |
{
|
2 |
"_class_name": "WuerstchenGeneratorPipeline",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
"efficient_net": [
|
5 |
"wuerstchen",
|
6 |
"EfficientNetEncoder"
|
|
|
15 |
],
|
16 |
"vqgan": [
|
17 |
"diffusers",
|
18 |
+
"VQModelPaella"
|
19 |
]
|
20 |
}
|
scheduler/scheduler_config.json
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
{
|
2 |
"_class_name": "DDPMScheduler",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"beta_end": 0.02,
|
5 |
"beta_schedule": "squaredcos_cap_v2",
|
6 |
"beta_start": 0.0001,
|
7 |
-
"clip_sample":
|
8 |
"clip_sample_range": 1.0,
|
9 |
"dynamic_thresholding_ratio": 0.995,
|
10 |
"num_train_timesteps": 1000,
|
11 |
"prediction_type": "epsilon",
|
12 |
"sample_max_value": 1.0,
|
|
|
13 |
"thresholding": false,
|
|
|
14 |
"trained_betas": null,
|
15 |
"variance_type": "fixed_small"
|
16 |
}
|
|
|
1 |
{
|
2 |
"_class_name": "DDPMScheduler",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
"beta_end": 0.02,
|
5 |
"beta_schedule": "squaredcos_cap_v2",
|
6 |
"beta_start": 0.0001,
|
7 |
+
"clip_sample": false,
|
8 |
"clip_sample_range": 1.0,
|
9 |
"dynamic_thresholding_ratio": 0.995,
|
10 |
"num_train_timesteps": 1000,
|
11 |
"prediction_type": "epsilon",
|
12 |
"sample_max_value": 1.0,
|
13 |
+
"steps_offset": 0,
|
14 |
"thresholding": false,
|
15 |
+
"timestep_spacing": "leading",
|
16 |
"trained_betas": null,
|
17 |
"variance_type": "fixed_small"
|
18 |
}
|
vqgan/config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"_class_name": "
|
3 |
-
"_diffusers_version": "0.
|
4 |
"bottleneck_blocks": 12,
|
5 |
"c_hidden": 384,
|
6 |
"c_latent": 4,
|
|
|
1 |
{
|
2 |
+
"_class_name": "VQModelPaella",
|
3 |
+
"_diffusers_version": "0.19.0.dev0",
|
4 |
"bottleneck_blocks": 12,
|
5 |
"c_hidden": 384,
|
6 |
"c_latent": 4,
|