Add project page

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +13 -83
README.md CHANGED
@@ -1,18 +1,18 @@
1
  ---
 
 
2
  language: en
3
- license: cc-by-sa-4.0
4
  library_name: torch
5
- tags:
6
- - medical
7
- - segmentation
8
- - sam
9
- - medical-imaging
10
- - ct
11
- - mri
12
- - ultrasound
13
  pipeline_tag: image-segmentation
14
- datasets:
15
- - medical
 
 
 
 
 
 
16
  ---
17
 
18
  # MedSAM2: Segment Anything in 3D Medical Images and Videos
@@ -37,6 +37,7 @@ datasets:
37
  </table>
38
  </div>
39
 
 
40
 
41
  ## Authors
42
 
@@ -78,75 +79,4 @@ datasets:
78
  ## Model Overview
79
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
80
 
81
- ## Available Models
82
-
83
- - **MedSAM2_2411.pt**: Base model trained in November 2024
84
- - **MedSAM2_US_Heart.pt**: Fine-tuned model specialized for heart ultrasound video segmentation
85
- - **MedSAM2_MRI_LiverLesion.pt**: Fine-tuned model for liver lesion segmentation in MRI scans
86
- - **MedSAM2_CTLesion.pt**: Fine-tuned model for general lesion segmentation in CT scans
87
- - **MedSAM2_latest.pt** (recommended): Latest version trained on the combination of public datasets and newly annotated medical imaging data
88
-
89
- ## Downloading Models
90
-
91
- ### Option 1: Download individual models
92
- You can download the models directly from the Hugging Face repository:
93
-
94
- ```python
95
- # Using huggingface_hub
96
- from huggingface_hub import hf_hub_download
97
-
98
- # Download the recommended latest model
99
- model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_latest.pt")
100
-
101
- # Or download a specific fine-tuned model
102
- heart_us_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_US_Heart.pt")
103
- liver_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_MRI_LiverLesion.pt")
104
- ```
105
-
106
- ### Option 2: Download all models to a specific folder
107
- ```python
108
- from huggingface_hub import hf_hub_download
109
- import os
110
-
111
- # Create checkpoints directory if it doesn't exist
112
- os.makedirs("checkpoints", exist_ok=True)
113
-
114
- # List of model filenames
115
- model_files = [
116
- "MedSAM2_2411.pt",
117
- "MedSAM2_US_Heart.pt",
118
- "MedSAM2_MRI_LiverLesion.pt",
119
- "MedSAM2_CTLesion.pt",
120
- "MedSAM2_latest.pt"
121
- ]
122
-
123
- # Download all models
124
- for model_file in model_files:
125
- local_path = os.path.join("checkpoints", model_file)
126
- hf_hub_download(
127
- repo_id="wanglab/MedSAM2",
128
- filename=model_file,
129
- local_dir="checkpoints",
130
- local_dir_use_symlinks=False
131
- )
132
- print(f"Downloaded {model_file} to {local_path}")
133
- ```
134
-
135
- Alternatively, you can manually download the models from the [Hugging Face repository page](https://huggingface.co/wanglab/MedSAM2).
136
-
137
-
138
-
139
- ## Citations
140
-
141
- ```
142
- @article{MedSAM2,
143
- title={MedSAM2: Segment Anything in 3D Medical Images and Videos},
144
- author={Ma, Jun and Yang, Zongxin and Kim, Sumin and Chen, Bihui and Baharoon, Mohammed and Fallahpour, Adibvafa and Asakereh, Reza and Lyu, Hongwei and Wang, Bo},
145
- journal={arXiv preprint arXiv:2504.03600},
146
- year={2025}
147
- }
148
- ```
149
-
150
- ## License
151
-
152
- The model weights can only be used for research and education purposes.
 
1
  ---
2
+ datasets:
3
+ - medical
4
  language: en
 
5
  library_name: torch
6
+ license: cc-by-sa-4.0
 
 
 
 
 
 
 
7
  pipeline_tag: image-segmentation
8
+ tags:
9
+ - medical
10
+ - segmentation
11
+ - sam
12
+ - medical-imaging
13
+ - ct
14
+ - mri
15
+ - ultrasound
16
  ---
17
 
18
  # MedSAM2: Segment Anything in 3D Medical Images and Videos
 
37
  </table>
38
  </div>
39
 
40
+ [Project Page](https://medsam2.github.io/)
41
 
42
  ## Authors
43
 
 
79
  ## Model Overview
80
  MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
81
 
82
+ <!-- rest of the model card -->