Add project page
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
---
|
|
|
|
|
2 |
language: en
|
3 |
-
license: cc-by-sa-4.0
|
4 |
library_name: torch
|
5 |
-
|
6 |
-
- medical
|
7 |
-
- segmentation
|
8 |
-
- sam
|
9 |
-
- medical-imaging
|
10 |
-
- ct
|
11 |
-
- mri
|
12 |
-
- ultrasound
|
13 |
pipeline_tag: image-segmentation
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |
# MedSAM2: Segment Anything in 3D Medical Images and Videos
|
@@ -37,6 +37,7 @@ datasets:
|
|
37 |
</table>
|
38 |
</div>
|
39 |
|
|
|
40 |
|
41 |
## Authors
|
42 |
|
@@ -78,75 +79,4 @@ datasets:
|
|
78 |
## Model Overview
|
79 |
MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
- **MedSAM2_2411.pt**: Base model trained in November 2024
|
84 |
-
- **MedSAM2_US_Heart.pt**: Fine-tuned model specialized for heart ultrasound video segmentation
|
85 |
-
- **MedSAM2_MRI_LiverLesion.pt**: Fine-tuned model for liver lesion segmentation in MRI scans
|
86 |
-
- **MedSAM2_CTLesion.pt**: Fine-tuned model for general lesion segmentation in CT scans
|
87 |
-
- **MedSAM2_latest.pt** (recommended): Latest version trained on the combination of public datasets and newly annotated medical imaging data
|
88 |
-
|
89 |
-
## Downloading Models
|
90 |
-
|
91 |
-
### Option 1: Download individual models
|
92 |
-
You can download the models directly from the Hugging Face repository:
|
93 |
-
|
94 |
-
```python
|
95 |
-
# Using huggingface_hub
|
96 |
-
from huggingface_hub import hf_hub_download
|
97 |
-
|
98 |
-
# Download the recommended latest model
|
99 |
-
model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_latest.pt")
|
100 |
-
|
101 |
-
# Or download a specific fine-tuned model
|
102 |
-
heart_us_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_US_Heart.pt")
|
103 |
-
liver_model_path = hf_hub_download(repo_id="wanglab/MedSAM2", filename="MedSAM2_MRI_LiverLesion.pt")
|
104 |
-
```
|
105 |
-
|
106 |
-
### Option 2: Download all models to a specific folder
|
107 |
-
```python
|
108 |
-
from huggingface_hub import hf_hub_download
|
109 |
-
import os
|
110 |
-
|
111 |
-
# Create checkpoints directory if it doesn't exist
|
112 |
-
os.makedirs("checkpoints", exist_ok=True)
|
113 |
-
|
114 |
-
# List of model filenames
|
115 |
-
model_files = [
|
116 |
-
"MedSAM2_2411.pt",
|
117 |
-
"MedSAM2_US_Heart.pt",
|
118 |
-
"MedSAM2_MRI_LiverLesion.pt",
|
119 |
-
"MedSAM2_CTLesion.pt",
|
120 |
-
"MedSAM2_latest.pt"
|
121 |
-
]
|
122 |
-
|
123 |
-
# Download all models
|
124 |
-
for model_file in model_files:
|
125 |
-
local_path = os.path.join("checkpoints", model_file)
|
126 |
-
hf_hub_download(
|
127 |
-
repo_id="wanglab/MedSAM2",
|
128 |
-
filename=model_file,
|
129 |
-
local_dir="checkpoints",
|
130 |
-
local_dir_use_symlinks=False
|
131 |
-
)
|
132 |
-
print(f"Downloaded {model_file} to {local_path}")
|
133 |
-
```
|
134 |
-
|
135 |
-
Alternatively, you can manually download the models from the [Hugging Face repository page](https://huggingface.co/wanglab/MedSAM2).
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
## Citations
|
140 |
-
|
141 |
-
```
|
142 |
-
@article{MedSAM2,
|
143 |
-
title={MedSAM2: Segment Anything in 3D Medical Images and Videos},
|
144 |
-
author={Ma, Jun and Yang, Zongxin and Kim, Sumin and Chen, Bihui and Baharoon, Mohammed and Fallahpour, Adibvafa and Asakereh, Reza and Lyu, Hongwei and Wang, Bo},
|
145 |
-
journal={arXiv preprint arXiv:2504.03600},
|
146 |
-
year={2025}
|
147 |
-
}
|
148 |
-
```
|
149 |
-
|
150 |
-
## License
|
151 |
-
|
152 |
-
The model weights can only be used for research and education purposes.
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- medical
|
4 |
language: en
|
|
|
5 |
library_name: torch
|
6 |
+
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
pipeline_tag: image-segmentation
|
8 |
+
tags:
|
9 |
+
- medical
|
10 |
+
- segmentation
|
11 |
+
- sam
|
12 |
+
- medical-imaging
|
13 |
+
- ct
|
14 |
+
- mri
|
15 |
+
- ultrasound
|
16 |
---
|
17 |
|
18 |
# MedSAM2: Segment Anything in 3D Medical Images and Videos
|
|
|
37 |
</table>
|
38 |
</div>
|
39 |
|
40 |
+
[Project Page](https://medsam2.github.io/)
|
41 |
|
42 |
## Authors
|
43 |
|
|
|
79 |
## Model Overview
|
80 |
MedSAM2 is a promptable segmentation segmentation model tailored for medical imaging applications. Built upon the foundation of the [Segment Anything Model (SAM) 2.1](https://github.com/facebookresearch/sam2), MedSAM2 has been specifically adapted and fine-tuned for various 3D medical images and videos.
|
81 |
|
82 |
+
<!-- rest of the model card -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|