waelChafei commited on
Commit
5fdd7fc
·
verified ·
1 Parent(s): 29b1c0e

resume-bert

Browse files
Files changed (4) hide show
  1. README.md +156 -82
  2. config.json +45 -3
  3. model.safetensors +2 -2
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -18,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # TTC4900Model
20
 
21
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.4669
24
- - Accuracy: 0.8633
25
- - F1: 0.7752
26
- - Precision: 0.7764
27
- - Recall: 0.7751
28
 
29
  ## Model description
30
 
@@ -44,8 +44,8 @@ More information needed
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 5e-05
47
- - train_batch_size: 32
48
- - eval_batch_size: 64
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
@@ -57,79 +57,153 @@ The following hyperparameters were used during training:
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
- | 1.6784 | 0.04 | 50 | 1.2099 | 0.5995 | 0.2253 | 0.3879 | 0.2247 |
61
- | 1.0203 | 0.08 | 100 | 0.7696 | 0.7533 | 0.4285 | 0.5258 | 0.4563 |
62
- | 0.7322 | 0.12 | 150 | 0.6271 | 0.8152 | 0.6305 | 0.6720 | 0.6056 |
63
- | 0.6119 | 0.16 | 200 | 0.5934 | 0.8270 | 0.6673 | 0.7649 | 0.6662 |
64
- | 0.6203 | 0.2 | 250 | 0.5759 | 0.8281 | 0.6618 | 0.7352 | 0.6566 |
65
- | 0.5874 | 0.24 | 300 | 0.5446 | 0.8373 | 0.7351 | 0.7633 | 0.7256 |
66
- | 0.5507 | 0.28 | 350 | 0.5371 | 0.8394 | 0.7481 | 0.7580 | 0.7435 |
67
- | 0.5615 | 0.33 | 400 | 0.5272 | 0.8469 | 0.7377 | 0.7961 | 0.7241 |
68
- | 0.5371 | 0.37 | 450 | 0.5193 | 0.8431 | 0.7413 | 0.7828 | 0.7299 |
69
- | 0.5267 | 0.41 | 500 | 0.5124 | 0.8490 | 0.7446 | 0.7714 | 0.7321 |
70
- | 0.4971 | 0.45 | 550 | 0.5105 | 0.8509 | 0.7503 | 0.8071 | 0.7192 |
71
- | 0.5399 | 0.49 | 600 | 0.5149 | 0.8473 | 0.7402 | 0.7849 | 0.7291 |
72
- | 0.5229 | 0.53 | 650 | 0.5190 | 0.8447 | 0.7504 | 0.7753 | 0.7421 |
73
- | 0.5077 | 0.57 | 700 | 0.5096 | 0.8487 | 0.7528 | 0.7764 | 0.7413 |
74
- | 0.5073 | 0.61 | 750 | 0.4946 | 0.8511 | 0.7487 | 0.8055 | 0.7279 |
75
- | 0.4823 | 0.65 | 800 | 0.5105 | 0.8506 | 0.7509 | 0.7918 | 0.7292 |
76
- | 0.483 | 0.69 | 850 | 0.4887 | 0.8542 | 0.7653 | 0.7936 | 0.7502 |
77
- | 0.55 | 0.73 | 900 | 0.4865 | 0.8556 | 0.7599 | 0.8010 | 0.7425 |
78
- | 0.5406 | 0.77 | 950 | 0.4875 | 0.8533 | 0.7515 | 0.8018 | 0.7255 |
79
- | 0.5078 | 0.81 | 1000 | 0.5075 | 0.8564 | 0.7528 | 0.8134 | 0.7227 |
80
- | 0.4965 | 0.85 | 1050 | 0.4789 | 0.8560 | 0.7655 | 0.7995 | 0.7405 |
81
- | 0.4676 | 0.89 | 1100 | 0.4806 | 0.8555 | 0.7468 | 0.7989 | 0.7244 |
82
- | 0.4786 | 0.93 | 1150 | 0.4822 | 0.8572 | 0.7587 | 0.7762 | 0.7504 |
83
- | 0.4928 | 0.98 | 1200 | 0.4743 | 0.8569 | 0.7553 | 0.8009 | 0.7404 |
84
- | 0.472 | 1.02 | 1250 | 0.4917 | 0.8581 | 0.7511 | 0.8075 | 0.7278 |
85
- | 0.395 | 1.06 | 1300 | 0.4929 | 0.8573 | 0.7657 | 0.7937 | 0.7516 |
86
- | 0.3735 | 1.1 | 1350 | 0.4844 | 0.8558 | 0.7687 | 0.7685 | 0.7693 |
87
- | 0.3974 | 1.14 | 1400 | 0.5005 | 0.8504 | 0.7631 | 0.7556 | 0.7732 |
88
- | 0.4197 | 1.18 | 1450 | 0.5044 | 0.8557 | 0.7475 | 0.8096 | 0.7265 |
89
- | 0.4149 | 1.22 | 1500 | 0.4914 | 0.8560 | 0.7556 | 0.8009 | 0.7431 |
90
- | 0.4937 | 1.26 | 1550 | 0.4684 | 0.8583 | 0.7697 | 0.7847 | 0.7596 |
91
- | 0.344 | 1.3 | 1600 | 0.5126 | 0.8570 | 0.7606 | 0.8084 | 0.7369 |
92
- | 0.4399 | 1.34 | 1650 | 0.4856 | 0.8545 | 0.7608 | 0.7947 | 0.7490 |
93
- | 0.4176 | 1.38 | 1700 | 0.4851 | 0.8578 | 0.7648 | 0.8018 | 0.7419 |
94
- | 0.4301 | 1.42 | 1750 | 0.4725 | 0.8579 | 0.7673 | 0.7811 | 0.7611 |
95
- | 0.4161 | 1.46 | 1800 | 0.4794 | 0.8587 | 0.7712 | 0.7954 | 0.7583 |
96
- | 0.3632 | 1.5 | 1850 | 0.4835 | 0.8579 | 0.7716 | 0.8036 | 0.7543 |
97
- | 0.4328 | 1.54 | 1900 | 0.4748 | 0.8574 | 0.7744 | 0.7958 | 0.7606 |
98
- | 0.4026 | 1.59 | 1950 | 0.4733 | 0.8571 | 0.7726 | 0.7925 | 0.7591 |
99
- | 0.3792 | 1.63 | 2000 | 0.4826 | 0.8593 | 0.7715 | 0.7912 | 0.7576 |
100
- | 0.4087 | 1.67 | 2050 | 0.4732 | 0.8594 | 0.7704 | 0.7954 | 0.7525 |
101
- | 0.3953 | 1.71 | 2100 | 0.4721 | 0.8592 | 0.7724 | 0.7869 | 0.7634 |
102
- | 0.403 | 1.75 | 2150 | 0.4714 | 0.8629 | 0.7737 | 0.8055 | 0.7552 |
103
- | 0.3987 | 1.79 | 2200 | 0.4657 | 0.8617 | 0.7729 | 0.7929 | 0.7583 |
104
- | 0.3891 | 1.83 | 2250 | 0.4694 | 0.8609 | 0.7720 | 0.7877 | 0.7664 |
105
- | 0.4266 | 1.87 | 2300 | 0.4716 | 0.8603 | 0.7696 | 0.7953 | 0.7625 |
106
- | 0.3784 | 1.91 | 2350 | 0.4658 | 0.8609 | 0.7735 | 0.7968 | 0.7606 |
107
- | 0.4108 | 1.95 | 2400 | 0.4571 | 0.8611 | 0.7746 | 0.8005 | 0.7585 |
108
- | 0.4227 | 1.99 | 2450 | 0.4575 | 0.8634 | 0.7812 | 0.8047 | 0.7643 |
109
- | 0.2896 | 2.03 | 2500 | 0.4835 | 0.8637 | 0.7801 | 0.7916 | 0.7730 |
110
- | 0.3539 | 2.07 | 2550 | 0.4741 | 0.8626 | 0.7787 | 0.7974 | 0.7664 |
111
- | 0.3657 | 2.11 | 2600 | 0.4799 | 0.8579 | 0.7737 | 0.7964 | 0.7592 |
112
- | 0.3407 | 2.15 | 2650 | 0.4765 | 0.8604 | 0.7681 | 0.7963 | 0.7524 |
113
- | 0.317 | 2.2 | 2700 | 0.4817 | 0.8583 | 0.7729 | 0.7797 | 0.7705 |
114
- | 0.3166 | 2.24 | 2750 | 0.4886 | 0.8589 | 0.7653 | 0.7917 | 0.7553 |
115
- | 0.3078 | 2.28 | 2800 | 0.4927 | 0.8574 | 0.7709 | 0.7888 | 0.7607 |
116
- | 0.3366 | 2.32 | 2850 | 0.4948 | 0.8600 | 0.7735 | 0.7907 | 0.7609 |
117
- | 0.2863 | 2.36 | 2900 | 0.4994 | 0.8578 | 0.7699 | 0.7784 | 0.7668 |
118
- | 0.255 | 2.4 | 2950 | 0.5017 | 0.8601 | 0.7696 | 0.7862 | 0.7575 |
119
- | 0.3379 | 2.44 | 3000 | 0.4824 | 0.8591 | 0.7715 | 0.7787 | 0.7671 |
120
- | 0.2751 | 2.48 | 3050 | 0.4944 | 0.8616 | 0.7745 | 0.7965 | 0.7587 |
121
- | 0.2902 | 2.52 | 3100 | 0.4865 | 0.8596 | 0.7751 | 0.7863 | 0.7675 |
122
- | 0.2917 | 2.56 | 3150 | 0.4875 | 0.8608 | 0.7748 | 0.7864 | 0.7656 |
123
- | 0.3014 | 2.6 | 3200 | 0.4872 | 0.8614 | 0.7756 | 0.7886 | 0.7663 |
124
- | 0.3269 | 2.64 | 3250 | 0.4905 | 0.8598 | 0.7763 | 0.7884 | 0.7669 |
125
- | 0.3245 | 2.68 | 3300 | 0.4898 | 0.8625 | 0.7778 | 0.7971 | 0.7627 |
126
- | 0.2951 | 2.72 | 3350 | 0.4864 | 0.8599 | 0.7771 | 0.7885 | 0.7686 |
127
- | 0.2888 | 2.76 | 3400 | 0.4906 | 0.8623 | 0.7758 | 0.7969 | 0.7609 |
128
- | 0.3037 | 2.8 | 3450 | 0.4863 | 0.8609 | 0.7751 | 0.7939 | 0.7630 |
129
- | 0.2855 | 2.85 | 3500 | 0.4881 | 0.8621 | 0.7773 | 0.7935 | 0.7661 |
130
- | 0.297 | 2.89 | 3550 | 0.4880 | 0.8620 | 0.7786 | 0.7927 | 0.7687 |
131
- | 0.2753 | 2.93 | 3600 | 0.4887 | 0.8615 | 0.7772 | 0.7902 | 0.7679 |
132
- | 0.2922 | 2.97 | 3650 | 0.4876 | 0.8610 | 0.7770 | 0.7883 | 0.7691 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
 
135
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: t5-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
18
 
19
  # TTC4900Model
20
 
21
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.5626
24
+ - Accuracy: 0.8360
25
+ - F1: 0.7230
26
+ - Precision: 0.7553
27
+ - Recall: 0.7035
28
 
29
  ## Model description
30
 
 
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
 
57
 
58
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 1.5247 | 0.02 | 50 | 1.3656 | 0.5365 | 0.1841 | 0.1839 | 0.2054 |
61
+ | 1.3764 | 0.04 | 100 | 1.2543 | 0.5539 | 0.2163 | 0.2377 | 0.2461 |
62
+ | 1.3046 | 0.06 | 150 | 1.5517 | 0.4440 | 0.2151 | 0.2231 | 0.2624 |
63
+ | 1.2523 | 0.08 | 200 | 1.2396 | 0.5535 | 0.2195 | 0.4997 | 0.2627 |
64
+ | 1.1098 | 0.1 | 250 | 1.0067 | 0.6573 | 0.3306 | 0.5386 | 0.3212 |
65
+ | 1.0741 | 0.12 | 300 | 1.0024 | 0.6414 | 0.3577 | 0.5714 | 0.3656 |
66
+ | 1.0024 | 0.14 | 350 | 0.9799 | 0.7002 | 0.4266 | 0.5953 | 0.4209 |
67
+ | 1.0388 | 0.16 | 400 | 0.9474 | 0.7050 | 0.4228 | 0.5023 | 0.4189 |
68
+ | 0.9636 | 0.18 | 450 | 0.8516 | 0.7154 | 0.4555 | 0.5558 | 0.4595 |
69
+ | 0.9631 | 0.2 | 500 | 0.8184 | 0.7273 | 0.4893 | 0.6215 | 0.4590 |
70
+ | 0.8994 | 0.22 | 550 | 0.8795 | 0.7371 | 0.5013 | 0.6266 | 0.4755 |
71
+ | 0.9249 | 0.24 | 600 | 0.8099 | 0.7503 | 0.5343 | 0.6028 | 0.5132 |
72
+ | 0.8182 | 0.26 | 650 | 0.7670 | 0.7454 | 0.5381 | 0.5897 | 0.5362 |
73
+ | 0.8872 | 0.28 | 700 | 0.7848 | 0.7471 | 0.5722 | 0.6469 | 0.5761 |
74
+ | 0.8227 | 0.31 | 750 | 0.8970 | 0.7366 | 0.5019 | 0.6595 | 0.4832 |
75
+ | 0.7964 | 0.33 | 800 | 0.7660 | 0.7523 | 0.5409 | 0.5435 | 0.5837 |
76
+ | 0.7897 | 0.35 | 850 | 0.9406 | 0.7072 | 0.5390 | 0.6241 | 0.5189 |
77
+ | 0.8045 | 0.37 | 900 | 0.8252 | 0.7215 | 0.4806 | 0.6539 | 0.4352 |
78
+ | 0.7349 | 0.39 | 950 | 0.7106 | 0.7828 | 0.6034 | 0.6272 | 0.5884 |
79
+ | 0.7794 | 0.41 | 1000 | 0.6791 | 0.7837 | 0.5893 | 0.6250 | 0.5803 |
80
+ | 0.7159 | 0.43 | 1050 | 0.6934 | 0.7842 | 0.5837 | 0.6654 | 0.5587 |
81
+ | 0.7128 | 0.45 | 1100 | 0.7069 | 0.7843 | 0.6076 | 0.6533 | 0.5776 |
82
+ | 0.7849 | 0.47 | 1150 | 0.7099 | 0.7620 | 0.5944 | 0.7678 | 0.5965 |
83
+ | 0.741 | 0.49 | 1200 | 0.7663 | 0.7478 | 0.5749 | 0.7549 | 0.5704 |
84
+ | 0.6905 | 0.51 | 1250 | 0.6842 | 0.7925 | 0.6148 | 0.6396 | 0.6041 |
85
+ | 0.7195 | 0.53 | 1300 | 0.7248 | 0.7720 | 0.5769 | 0.7638 | 0.5497 |
86
+ | 0.7394 | 0.55 | 1350 | 0.6870 | 0.7911 | 0.6002 | 0.6628 | 0.5739 |
87
+ | 0.6696 | 0.57 | 1400 | 0.6674 | 0.7987 | 0.6290 | 0.6450 | 0.6199 |
88
+ | 0.7133 | 0.59 | 1450 | 0.6785 | 0.7938 | 0.6141 | 0.6470 | 0.6134 |
89
+ | 0.6743 | 0.61 | 1500 | 0.6901 | 0.7965 | 0.6184 | 0.8136 | 0.5925 |
90
+ | 0.684 | 0.63 | 1550 | 0.6921 | 0.7957 | 0.6297 | 0.6979 | 0.6063 |
91
+ | 0.6555 | 0.65 | 1600 | 0.7061 | 0.7790 | 0.6010 | 0.6025 | 0.6244 |
92
+ | 0.6188 | 0.67 | 1650 | 0.7503 | 0.7781 | 0.5902 | 0.8093 | 0.5338 |
93
+ | 0.7457 | 0.69 | 1700 | 0.6710 | 0.7978 | 0.6026 | 0.6432 | 0.6066 |
94
+ | 0.7393 | 0.71 | 1750 | 0.6759 | 0.7930 | 0.6339 | 0.7666 | 0.6475 |
95
+ | 0.7628 | 0.73 | 1800 | 0.6377 | 0.8089 | 0.6456 | 0.6942 | 0.6522 |
96
+ | 0.735 | 0.75 | 1850 | 0.7434 | 0.7930 | 0.6283 | 0.6680 | 0.6121 |
97
+ | 0.7296 | 0.77 | 1900 | 0.6502 | 0.8126 | 0.6487 | 0.7385 | 0.6379 |
98
+ | 0.6928 | 0.79 | 1950 | 0.6253 | 0.8136 | 0.6511 | 0.7353 | 0.6320 |
99
+ | 0.6352 | 0.81 | 2000 | 0.6476 | 0.8059 | 0.6374 | 0.8051 | 0.6263 |
100
+ | 0.6468 | 0.83 | 2050 | 0.6562 | 0.8032 | 0.6314 | 0.7535 | 0.6204 |
101
+ | 0.7292 | 0.85 | 2100 | 0.6385 | 0.7957 | 0.5927 | 0.6855 | 0.5790 |
102
+ | 0.6161 | 0.87 | 2150 | 0.6428 | 0.8056 | 0.6205 | 0.6775 | 0.6026 |
103
+ | 0.6515 | 0.89 | 2200 | 0.6184 | 0.8162 | 0.6405 | 0.6590 | 0.6361 |
104
+ | 0.6213 | 0.92 | 2250 | 0.6490 | 0.8047 | 0.6320 | 0.6843 | 0.6086 |
105
+ | 0.6625 | 0.94 | 2300 | 0.7454 | 0.7734 | 0.5984 | 0.6586 | 0.6370 |
106
+ | 0.698 | 0.96 | 2350 | 0.7369 | 0.7873 | 0.6150 | 0.7827 | 0.5866 |
107
+ | 0.6565 | 0.98 | 2400 | 0.6749 | 0.7957 | 0.6368 | 0.7346 | 0.6125 |
108
+ | 0.7032 | 1.0 | 2450 | 0.6655 | 0.8008 | 0.6351 | 0.6600 | 0.6236 |
109
+ | 0.5442 | 1.02 | 2500 | 0.6429 | 0.8187 | 0.6571 | 0.7666 | 0.6432 |
110
+ | 0.6461 | 1.04 | 2550 | 0.6369 | 0.8037 | 0.6342 | 0.7544 | 0.6066 |
111
+ | 0.5382 | 1.06 | 2600 | 0.6912 | 0.8069 | 0.6448 | 0.6517 | 0.6407 |
112
+ | 0.5253 | 1.08 | 2650 | 0.7129 | 0.8041 | 0.6166 | 0.8399 | 0.5795 |
113
+ | 0.5729 | 1.1 | 2700 | 0.7291 | 0.7814 | 0.6351 | 0.6685 | 0.6547 |
114
+ | 0.6183 | 1.12 | 2750 | 0.6339 | 0.8145 | 0.6687 | 0.7169 | 0.6531 |
115
+ | 0.5461 | 1.14 | 2800 | 0.6108 | 0.8176 | 0.6838 | 0.7399 | 0.6695 |
116
+ | 0.5827 | 1.16 | 2850 | 0.6113 | 0.8182 | 0.6759 | 0.7503 | 0.6471 |
117
+ | 0.5903 | 1.18 | 2900 | 0.6881 | 0.8022 | 0.6551 | 0.7410 | 0.6453 |
118
+ | 0.5672 | 1.2 | 2950 | 0.5965 | 0.8214 | 0.6741 | 0.7804 | 0.6591 |
119
+ | 0.543 | 1.22 | 3000 | 0.6554 | 0.8164 | 0.6557 | 0.7584 | 0.6656 |
120
+ | 0.6311 | 1.24 | 3050 | 0.6137 | 0.8219 | 0.6840 | 0.7789 | 0.6486 |
121
+ | 0.661 | 1.26 | 3100 | 0.6244 | 0.8184 | 0.6805 | 0.7788 | 0.6517 |
122
+ | 0.5055 | 1.28 | 3150 | 0.6356 | 0.8145 | 0.6768 | 0.7629 | 0.6542 |
123
+ | 0.4951 | 1.3 | 3200 | 0.6167 | 0.8175 | 0.6770 | 0.7676 | 0.6644 |
124
+ | 0.5633 | 1.32 | 3250 | 0.6051 | 0.8232 | 0.6655 | 0.7882 | 0.6432 |
125
+ | 0.551 | 1.34 | 3300 | 0.6193 | 0.8211 | 0.6860 | 0.7320 | 0.6629 |
126
+ | 0.5962 | 1.36 | 3350 | 0.6165 | 0.8087 | 0.6533 | 0.7449 | 0.6251 |
127
+ | 0.5257 | 1.38 | 3400 | 0.5966 | 0.8193 | 0.6935 | 0.7627 | 0.6739 |
128
+ | 0.5366 | 1.4 | 3450 | 0.6110 | 0.8198 | 0.6911 | 0.7669 | 0.6519 |
129
+ | 0.5844 | 1.42 | 3500 | 0.6151 | 0.8223 | 0.6760 | 0.7847 | 0.6455 |
130
+ | 0.5652 | 1.44 | 3550 | 0.5907 | 0.8252 | 0.6723 | 0.7723 | 0.6646 |
131
+ | 0.5488 | 1.46 | 3600 | 0.6074 | 0.8268 | 0.7047 | 0.7835 | 0.6759 |
132
+ | 0.5235 | 1.48 | 3650 | 0.6133 | 0.8142 | 0.6850 | 0.7856 | 0.6568 |
133
+ | 0.5418 | 1.5 | 3700 | 0.6413 | 0.8215 | 0.6872 | 0.7915 | 0.6452 |
134
+ | 0.5564 | 1.53 | 3750 | 0.5809 | 0.8286 | 0.7049 | 0.7748 | 0.6855 |
135
+ | 0.5976 | 1.55 | 3800 | 0.5913 | 0.8244 | 0.6979 | 0.7594 | 0.6806 |
136
+ | 0.5032 | 1.57 | 3850 | 0.6211 | 0.8250 | 0.6663 | 0.7811 | 0.6485 |
137
+ | 0.535 | 1.59 | 3900 | 0.5805 | 0.8287 | 0.7001 | 0.7859 | 0.6694 |
138
+ | 0.5223 | 1.61 | 3950 | 0.6010 | 0.8189 | 0.6861 | 0.7607 | 0.6813 |
139
+ | 0.4967 | 1.63 | 4000 | 0.6011 | 0.8295 | 0.7019 | 0.7836 | 0.6717 |
140
+ | 0.507 | 1.65 | 4050 | 0.6121 | 0.8196 | 0.7075 | 0.7632 | 0.6866 |
141
+ | 0.585 | 1.67 | 4100 | 0.6019 | 0.8235 | 0.6669 | 0.7633 | 0.6364 |
142
+ | 0.5733 | 1.69 | 4150 | 0.5797 | 0.8302 | 0.6892 | 0.7955 | 0.6579 |
143
+ | 0.5482 | 1.71 | 4200 | 0.5895 | 0.8282 | 0.6960 | 0.7557 | 0.6862 |
144
+ | 0.5603 | 1.73 | 4250 | 0.5730 | 0.8270 | 0.7211 | 0.7751 | 0.6974 |
145
+ | 0.5017 | 1.75 | 4300 | 0.5956 | 0.8310 | 0.7061 | 0.7879 | 0.6721 |
146
+ | 0.5655 | 1.77 | 4350 | 0.5619 | 0.8326 | 0.7107 | 0.7976 | 0.6725 |
147
+ | 0.5659 | 1.79 | 4400 | 0.6281 | 0.8125 | 0.7087 | 0.7859 | 0.6691 |
148
+ | 0.5058 | 1.81 | 4450 | 0.5696 | 0.8307 | 0.7146 | 0.7723 | 0.6985 |
149
+ | 0.5106 | 1.83 | 4500 | 0.5951 | 0.8189 | 0.7095 | 0.7160 | 0.7131 |
150
+ | 0.5845 | 1.85 | 4550 | 0.5668 | 0.8336 | 0.7136 | 0.8014 | 0.6853 |
151
+ | 0.5256 | 1.87 | 4600 | 0.5658 | 0.8295 | 0.7087 | 0.7588 | 0.6973 |
152
+ | 0.5136 | 1.89 | 4650 | 0.5933 | 0.8300 | 0.6825 | 0.7629 | 0.6743 |
153
+ | 0.5515 | 1.91 | 4700 | 0.5753 | 0.8175 | 0.6839 | 0.8091 | 0.6319 |
154
+ | 0.5548 | 1.93 | 4750 | 0.5473 | 0.8346 | 0.7275 | 0.7792 | 0.6979 |
155
+ | 0.5377 | 1.95 | 4800 | 0.5725 | 0.8302 | 0.7307 | 0.7563 | 0.7166 |
156
+ | 0.5204 | 1.97 | 4850 | 0.5768 | 0.8288 | 0.6997 | 0.7873 | 0.6671 |
157
+ | 0.5688 | 1.99 | 4900 | 0.5480 | 0.8361 | 0.7244 | 0.8019 | 0.6887 |
158
+ | 0.4596 | 2.01 | 4950 | 0.6084 | 0.8298 | 0.7231 | 0.7653 | 0.7014 |
159
+ | 0.4357 | 2.03 | 5000 | 0.6180 | 0.8333 | 0.7251 | 0.7579 | 0.7046 |
160
+ | 0.4787 | 2.05 | 5050 | 0.5744 | 0.8293 | 0.7216 | 0.7789 | 0.6925 |
161
+ | 0.5183 | 2.07 | 5100 | 0.5747 | 0.8299 | 0.7263 | 0.7687 | 0.7092 |
162
+ | 0.532 | 2.09 | 5150 | 0.5626 | 0.8308 | 0.7150 | 0.7873 | 0.6920 |
163
+ | 0.4789 | 2.11 | 5200 | 0.5659 | 0.8308 | 0.7297 | 0.7603 | 0.7215 |
164
+ | 0.5121 | 2.14 | 5250 | 0.5739 | 0.8329 | 0.7229 | 0.7850 | 0.6880 |
165
+ | 0.4516 | 2.16 | 5300 | 0.5592 | 0.8376 | 0.7306 | 0.7966 | 0.6999 |
166
+ | 0.4789 | 2.18 | 5350 | 0.5679 | 0.8329 | 0.7232 | 0.7427 | 0.7122 |
167
+ | 0.4191 | 2.2 | 5400 | 0.5953 | 0.8282 | 0.7331 | 0.7701 | 0.7203 |
168
+ | 0.4519 | 2.22 | 5450 | 0.5779 | 0.8319 | 0.7233 | 0.7727 | 0.7047 |
169
+ | 0.4544 | 2.24 | 5500 | 0.5890 | 0.8330 | 0.7262 | 0.7535 | 0.7208 |
170
+ | 0.4191 | 2.26 | 5550 | 0.5872 | 0.8356 | 0.7307 | 0.7909 | 0.6951 |
171
+ | 0.459 | 2.28 | 5600 | 0.5952 | 0.8274 | 0.7241 | 0.7376 | 0.7178 |
172
+ | 0.4666 | 2.3 | 5650 | 0.5940 | 0.8310 | 0.7151 | 0.7634 | 0.7057 |
173
+ | 0.4608 | 2.32 | 5700 | 0.6021 | 0.8324 | 0.7202 | 0.7683 | 0.7026 |
174
+ | 0.4022 | 2.34 | 5750 | 0.5873 | 0.8346 | 0.7289 | 0.7705 | 0.7072 |
175
+ | 0.4588 | 2.36 | 5800 | 0.5611 | 0.8327 | 0.7271 | 0.7769 | 0.7070 |
176
+ | 0.3523 | 2.38 | 5850 | 0.5999 | 0.8370 | 0.7255 | 0.7761 | 0.7029 |
177
+ | 0.422 | 2.4 | 5900 | 0.5940 | 0.8367 | 0.7239 | 0.7769 | 0.7047 |
178
+ | 0.4827 | 2.42 | 5950 | 0.6002 | 0.8368 | 0.7194 | 0.7864 | 0.6945 |
179
+ | 0.4287 | 2.44 | 6000 | 0.5737 | 0.8380 | 0.7206 | 0.7678 | 0.7080 |
180
+ | 0.3921 | 2.46 | 6050 | 0.5859 | 0.8334 | 0.7258 | 0.7612 | 0.7166 |
181
+ | 0.4183 | 2.48 | 6100 | 0.5747 | 0.8400 | 0.7326 | 0.7756 | 0.7083 |
182
+ | 0.3758 | 2.5 | 6150 | 0.5781 | 0.8382 | 0.7276 | 0.7611 | 0.7126 |
183
+ | 0.4809 | 2.52 | 6200 | 0.5657 | 0.8383 | 0.7333 | 0.7778 | 0.7055 |
184
+ | 0.4405 | 2.54 | 6250 | 0.5809 | 0.8320 | 0.7345 | 0.7538 | 0.7242 |
185
+ | 0.3864 | 2.56 | 6300 | 0.5704 | 0.8393 | 0.7361 | 0.7742 | 0.7175 |
186
+ | 0.4576 | 2.58 | 6350 | 0.5602 | 0.8404 | 0.7353 | 0.7862 | 0.7098 |
187
+ | 0.4447 | 2.6 | 6400 | 0.5542 | 0.8391 | 0.7365 | 0.7695 | 0.7183 |
188
+ | 0.4523 | 2.62 | 6450 | 0.5484 | 0.8384 | 0.7396 | 0.7802 | 0.7149 |
189
+ | 0.456 | 2.64 | 6500 | 0.5608 | 0.8392 | 0.7351 | 0.7816 | 0.7123 |
190
+ | 0.4648 | 2.66 | 6550 | 0.5637 | 0.8394 | 0.7364 | 0.7808 | 0.7107 |
191
+ | 0.3735 | 2.68 | 6600 | 0.5752 | 0.8377 | 0.7385 | 0.7749 | 0.7213 |
192
+ | 0.4042 | 2.7 | 6650 | 0.5647 | 0.8361 | 0.7322 | 0.7790 | 0.7134 |
193
+ | 0.425 | 2.72 | 6700 | 0.5722 | 0.8380 | 0.7364 | 0.7829 | 0.7090 |
194
+ | 0.3668 | 2.75 | 6750 | 0.5900 | 0.8391 | 0.7363 | 0.7693 | 0.7204 |
195
+ | 0.4614 | 2.77 | 6800 | 0.5616 | 0.8396 | 0.7364 | 0.7779 | 0.7158 |
196
+ | 0.4351 | 2.79 | 6850 | 0.5634 | 0.8390 | 0.7359 | 0.7657 | 0.7220 |
197
+ | 0.4008 | 2.81 | 6900 | 0.5679 | 0.8388 | 0.7354 | 0.7716 | 0.7168 |
198
+ | 0.4538 | 2.83 | 6950 | 0.5610 | 0.8366 | 0.7425 | 0.7593 | 0.7350 |
199
+ | 0.3839 | 2.85 | 7000 | 0.5657 | 0.8404 | 0.7376 | 0.7820 | 0.7142 |
200
+ | 0.424 | 2.87 | 7050 | 0.5595 | 0.8395 | 0.7399 | 0.7754 | 0.7217 |
201
+ | 0.4125 | 2.89 | 7100 | 0.5581 | 0.8382 | 0.7411 | 0.7622 | 0.7301 |
202
+ | 0.3748 | 2.91 | 7150 | 0.5620 | 0.8388 | 0.7411 | 0.7660 | 0.7270 |
203
+ | 0.3782 | 2.93 | 7200 | 0.5601 | 0.8394 | 0.7421 | 0.7689 | 0.7266 |
204
+ | 0.4413 | 2.95 | 7250 | 0.5559 | 0.8396 | 0.7426 | 0.7680 | 0.7280 |
205
+ | 0.4182 | 2.97 | 7300 | 0.5530 | 0.8400 | 0.7429 | 0.7692 | 0.7274 |
206
+ | 0.4383 | 2.99 | 7350 | 0.5519 | 0.8405 | 0.7438 | 0.7715 | 0.7276 |
207
 
208
 
209
  ### Framework versions
config.json CHANGED
@@ -1,11 +1,16 @@
1
  {
2
- "_name_or_path": "bert-base-uncased",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
8
- "gradient_checkpointing": false,
 
 
 
 
 
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
@@ -18,8 +23,10 @@
18
  "5": "Obj",
19
  "6": "QC"
20
  },
 
21
  "initializer_range": 0.02,
22
  "intermediate_size": 3072,
 
23
  "label2id": {
24
  "Edu": 4,
25
  "Exp": 1,
@@ -30,16 +37,51 @@
30
  "Sum": 3
31
  },
32
  "layer_norm_eps": 1e-12,
 
33
  "max_position_embeddings": 512,
34
  "model_type": "bert",
 
35
  "num_attention_heads": 12,
 
36
  "num_hidden_layers": 12,
 
 
37
  "pad_token_id": 0,
38
  "position_embedding_type": "absolute",
39
  "problem_type": "single_label_classification",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  "torch_dtype": "float32",
41
  "transformers_version": "4.38.2",
42
  "type_vocab_size": 2,
43
  "use_cache": true,
44
- "vocab_size": 30522
45
  }
 
1
  {
2
+ "_name_or_path": "t5-base",
3
  "architectures": [
4
  "BertForSequenceClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
8
+ "d_ff": 3072,
9
+ "d_kv": 64,
10
+ "d_model": 768,
11
+ "decoder_start_token_id": 0,
12
+ "dropout_rate": 0.1,
13
+ "eos_token_id": 1,
14
  "hidden_act": "gelu",
15
  "hidden_dropout_prob": 0.1,
16
  "hidden_size": 768,
 
23
  "5": "Obj",
24
  "6": "QC"
25
  },
26
+ "initializer_factor": 1.0,
27
  "initializer_range": 0.02,
28
  "intermediate_size": 3072,
29
+ "is_encoder_decoder": true,
30
  "label2id": {
31
  "Edu": 4,
32
  "Exp": 1,
 
37
  "Sum": 3
38
  },
39
  "layer_norm_eps": 1e-12,
40
+ "layer_norm_epsilon": 1e-06,
41
  "max_position_embeddings": 512,
42
  "model_type": "bert",
43
+ "n_positions": 512,
44
  "num_attention_heads": 12,
45
+ "num_heads": 12,
46
  "num_hidden_layers": 12,
47
+ "num_layers": 12,
48
+ "output_past": true,
49
  "pad_token_id": 0,
50
  "position_embedding_type": "absolute",
51
  "problem_type": "single_label_classification",
52
+ "relative_attention_num_buckets": 32,
53
+ "task_specific_params": {
54
+ "summarization": {
55
+ "early_stopping": true,
56
+ "length_penalty": 2.0,
57
+ "max_length": 200,
58
+ "min_length": 30,
59
+ "no_repeat_ngram_size": 3,
60
+ "num_beams": 4,
61
+ "prefix": "summarize: "
62
+ },
63
+ "translation_en_to_de": {
64
+ "early_stopping": true,
65
+ "max_length": 300,
66
+ "num_beams": 4,
67
+ "prefix": "translate English to German: "
68
+ },
69
+ "translation_en_to_fr": {
70
+ "early_stopping": true,
71
+ "max_length": 300,
72
+ "num_beams": 4,
73
+ "prefix": "translate English to French: "
74
+ },
75
+ "translation_en_to_ro": {
76
+ "early_stopping": true,
77
+ "max_length": 300,
78
+ "num_beams": 4,
79
+ "prefix": "translate English to Romanian: "
80
+ }
81
+ },
82
  "torch_dtype": "float32",
83
  "transformers_version": "4.38.2",
84
  "type_vocab_size": 2,
85
  "use_cache": true,
86
+ "vocab_size": 32128
87
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9656ca09afacc33714dea0908bab08f8a96eab9c8b0c75b680e400fcd1294711
3
- size 437974028
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be2bcc1488bbb33b342d06cdf43b31725195440c5b923737d63a7013515ff4b0
3
+ size 442907668
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb4ca599e4007cf24e2e10eb05f5d833afcc40fc29d17147a8700df7a7ea7617
3
  size 4856
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9c5a7984785f057e0b43ffc6f1dcaae001f0197a2a208d07e16ab98eedbddcf
3
  size 4856