vwxyzjn commited on
Commit
25a3db0
·
1 Parent(s): 20419a5

pushing model

Browse files
README.md CHANGED
@@ -29,7 +29,7 @@ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py).
29
  ## Command to reproduce the training
30
 
31
  ```bash
32
- dqn.py --cuda False --save-model --upload-model --total-timesteps 500
33
  ```
34
 
35
  # Hyperparameters
 
29
  ## Command to reproduce the training
30
 
31
  ```bash
32
+ python dqn.py --cuda False --save-model --upload-model --total-timesteps 500
33
  ```
34
 
35
  # Hyperparameters
dqn.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqnpy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import sys
6
+ import time
7
+ from distutils.util import strtobool
8
+
9
+ import gym
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import torch.optim as optim
15
+ from stable_baselines3.common.buffers import ReplayBuffer
16
+ from torch.utils.tensorboard import SummaryWriter
17
+
18
+
19
+ def parse_args():
20
+ # fmt: off
21
+ parser = argparse.ArgumentParser()
22
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
23
+ help="the name of this experiment")
24
+ parser.add_argument("--seed", type=int, default=1,
25
+ help="seed of the experiment")
26
+ parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
27
+ help="if toggled, `torch.backends.cudnn.deterministic=False`")
28
+ parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
29
+ help="if toggled, cuda will be enabled by default")
30
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
31
+ help="if toggled, this experiment will be tracked with Weights and Biases")
32
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
33
+ help="the wandb's project name")
34
+ parser.add_argument("--wandb-entity", type=str, default=None,
35
+ help="the entity (team) of wandb's project")
36
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
37
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
38
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
39
+ help="whether to save model into the `runs/{run_name}` folder")
40
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
41
+ help="whether to upload the saved model to huggingface")
42
+ parser.add_argument("--hf-entity", type=str, default="",
43
+ help="the user or org name of the model repository from the Hugging Face Hub")
44
+
45
+ # Algorithm specific arguments
46
+ parser.add_argument("--env-id", type=str, default="CartPole-v1",
47
+ help="the id of the environment")
48
+ parser.add_argument("--total-timesteps", type=int, default=500000,
49
+ help="total timesteps of the experiments")
50
+ parser.add_argument("--learning-rate", type=float, default=2.5e-4,
51
+ help="the learning rate of the optimizer")
52
+ parser.add_argument("--buffer-size", type=int, default=10000,
53
+ help="the replay memory buffer size")
54
+ parser.add_argument("--gamma", type=float, default=0.99,
55
+ help="the discount factor gamma")
56
+ parser.add_argument("--target-network-frequency", type=int, default=500,
57
+ help="the timesteps it takes to update the target network")
58
+ parser.add_argument("--batch-size", type=int, default=128,
59
+ help="the batch size of sample from the reply memory")
60
+ parser.add_argument("--start-e", type=float, default=1,
61
+ help="the starting epsilon for exploration")
62
+ parser.add_argument("--end-e", type=float, default=0.05,
63
+ help="the ending epsilon for exploration")
64
+ parser.add_argument("--exploration-fraction", type=float, default=0.5,
65
+ help="the fraction of `total-timesteps` it takes from start-e to go end-e")
66
+ parser.add_argument("--learning-starts", type=int, default=10000,
67
+ help="timestep to start learning")
68
+ parser.add_argument("--train-frequency", type=int, default=10,
69
+ help="the frequency of training")
70
+ args = parser.parse_args()
71
+ # fmt: on
72
+ return args
73
+
74
+
75
+ def make_env(env_id, seed, idx, capture_video, run_name):
76
+ def thunk():
77
+ env = gym.make(env_id)
78
+ env = gym.wrappers.RecordEpisodeStatistics(env)
79
+ if capture_video:
80
+ if idx == 0:
81
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
82
+ env.seed(seed)
83
+ env.action_space.seed(seed)
84
+ env.observation_space.seed(seed)
85
+ return env
86
+
87
+ return thunk
88
+
89
+
90
+ # ALGO LOGIC: initialize agent here:
91
+ class QNetwork(nn.Module):
92
+ def __init__(self, env):
93
+ super().__init__()
94
+ self.network = nn.Sequential(
95
+ nn.Linear(np.array(env.single_observation_space.shape).prod(), 120),
96
+ nn.ReLU(),
97
+ nn.Linear(120, 84),
98
+ nn.ReLU(),
99
+ nn.Linear(84, env.single_action_space.n),
100
+ )
101
+
102
+ def forward(self, x):
103
+ return self.network(x)
104
+
105
+
106
+ def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
107
+ slope = (end_e - start_e) / duration
108
+ return max(slope * t + start_e, end_e)
109
+
110
+
111
+ if __name__ == "__main__":
112
+ args = parse_args()
113
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
114
+ if args.track:
115
+ import wandb
116
+
117
+ wandb.init(
118
+ project=args.wandb_project_name,
119
+ entity=args.wandb_entity,
120
+ sync_tensorboard=True,
121
+ config=vars(args),
122
+ name=run_name,
123
+ monitor_gym=True,
124
+ save_code=True,
125
+ )
126
+ writer = SummaryWriter(f"runs/{run_name}")
127
+ writer.add_text(
128
+ "hyperparameters",
129
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
130
+ )
131
+
132
+ # TRY NOT TO MODIFY: seeding
133
+ random.seed(args.seed)
134
+ np.random.seed(args.seed)
135
+ torch.manual_seed(args.seed)
136
+ torch.backends.cudnn.deterministic = args.torch_deterministic
137
+
138
+ device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
139
+
140
+ # env setup
141
+ envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
142
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
143
+
144
+ q_network = QNetwork(envs).to(device)
145
+ optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
146
+ target_network = QNetwork(envs).to(device)
147
+ target_network.load_state_dict(q_network.state_dict())
148
+
149
+ rb = ReplayBuffer(
150
+ args.buffer_size,
151
+ envs.single_observation_space,
152
+ envs.single_action_space,
153
+ device,
154
+ handle_timeout_termination=True,
155
+ )
156
+ start_time = time.time()
157
+
158
+ # TRY NOT TO MODIFY: start the game
159
+ obs = envs.reset()
160
+ for global_step in range(args.total_timesteps):
161
+ # ALGO LOGIC: put action logic here
162
+ epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
163
+ if random.random() < epsilon:
164
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
165
+ else:
166
+ q_values = q_network(torch.Tensor(obs).to(device))
167
+ actions = torch.argmax(q_values, dim=1).cpu().numpy()
168
+
169
+ # TRY NOT TO MODIFY: execute the game and log data.
170
+ next_obs, rewards, dones, infos = envs.step(actions)
171
+
172
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
173
+ for info in infos:
174
+ if "episode" in info.keys():
175
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
176
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
177
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
178
+ writer.add_scalar("charts/epsilon", epsilon, global_step)
179
+ break
180
+
181
+ # TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
182
+ real_next_obs = next_obs.copy()
183
+ for idx, d in enumerate(dones):
184
+ if d:
185
+ real_next_obs[idx] = infos[idx]["terminal_observation"]
186
+ rb.add(obs, real_next_obs, actions, rewards, dones, infos)
187
+
188
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
189
+ obs = next_obs
190
+
191
+ # ALGO LOGIC: training.
192
+ if global_step > args.learning_starts and global_step % args.train_frequency == 0:
193
+ data = rb.sample(args.batch_size)
194
+ with torch.no_grad():
195
+ target_max, _ = target_network(data.next_observations).max(dim=1)
196
+ td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
197
+ old_val = q_network(data.observations).gather(1, data.actions).squeeze()
198
+ loss = F.mse_loss(td_target, old_val)
199
+
200
+ if global_step % 100 == 0:
201
+ writer.add_scalar("losses/td_loss", loss, global_step)
202
+ writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
203
+ print("SPS:", int(global_step / (time.time() - start_time)))
204
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
205
+
206
+ # optimize the model
207
+ optimizer.zero_grad()
208
+ loss.backward()
209
+ optimizer.step()
210
+
211
+ # update the target network
212
+ if global_step % args.target_network_frequency == 0:
213
+ target_network.load_state_dict(q_network.state_dict())
214
+
215
+ envs.close()
216
+ writer.close()
217
+
218
+ if args.save_model:
219
+ torch.save(q_network.state_dict(), f"runs/{run_name}/q_network.pth")
220
+ print(f"model saved to ./runs/{run_name}/q_network.pth")
221
+ from cleanrl_utils.evals.dqn_eval import evaluate
222
+
223
+ episodic_returns = evaluate(
224
+ f"runs/{run_name}/q_network.pth",
225
+ make_env,
226
+ args.env_id,
227
+ eval_episodes=10,
228
+ run_name=f"{run_name}-eval",
229
+ Model=QNetwork,
230
+ device=device,
231
+ epsilon=0.05,
232
+ )
233
+ for idx, episodic_return in enumerate(episodic_returns):
234
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
235
+
236
+ if args.upload_model:
237
+ from cleanrl_utils.huggingface import push_to_hub
238
+
239
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
240
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
241
+ push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
events.out.tfevents.1668612393.pop-os.1029385.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfdf9296dd95288259e308b1dec0568655e54d36a19866cc8813db7b8b90cd7b
3
+ size 1805
events.out.tfevents.1668612395.pop-os.1029385.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f462f14da438bf7fc5f1f6ecfef9d808355a1f39d3af970866cbb4e9647dcb7b
3
+ size 618
replay.mp4 ADDED
Binary file (10.8 kB). View file
 
videos/CartPole-v1__dqn__1__1668612393-eval/rl-video-episode-0.mp4 ADDED
Binary file (12.6 kB). View file
 
videos/CartPole-v1__dqn__1__1668612393-eval/rl-video-episode-1.mp4 ADDED
Binary file (8.84 kB). View file
 
videos/CartPole-v1__dqn__1__1668612393-eval/rl-video-episode-8.mp4 ADDED
Binary file (10.8 kB). View file