Pushing the 2nd version of Lunar lander RL model to HF Hub
Browse files- Lunar_Lander_VSrinivas.zip +3 -0
- Lunar_Lander_VSrinivas/_stable_baselines3_version +1 -0
- Lunar_Lander_VSrinivas/data +99 -0
- Lunar_Lander_VSrinivas/policy.optimizer.pth +3 -0
- Lunar_Lander_VSrinivas/policy.pth +3 -0
- Lunar_Lander_VSrinivas/pytorch_variables.pth +3 -0
- Lunar_Lander_VSrinivas/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
Lunar_Lander_VSrinivas.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe71b7d86d6069d64bc8cb9504ba9ddf173e3d070a3fe66523a6501d0a248afc
|
3 |
+
size 146833
|
Lunar_Lander_VSrinivas/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
Lunar_Lander_VSrinivas/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e9d6509d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e9d650a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e9d650af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e9d650b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2e9d650c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2e9d650ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e9d650d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e9d650dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2e9d650e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e9d650ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e9d650f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e9d651000>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2e9d64aa80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5013504,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685335392641536128,
|
30 |
+
"learning_rate": 0.0005,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAICORz4gC4Y+tcDPvn/+H796PoE+ZbnWvgAAAAAAAAAAZmQVPBQalrorpd+6cyaRtbhLGru1cv45AACAPwAAgD8Qw0++kl4yPqOzzT5joyu/pfWqvv6Xoj4AAAAAAAAAAGbYDj4JwI8/ogmyPo/8DL/k2ak+CFuxPgAAAAAAAAAA8yq4PaVCtj+yBfc+3Cspvkj83D3Q/9k+AAAAAAAAAADNo4m8z6FevEIM9b0ZYuY8lakGPVrqfjwAAIA/AACAPwDAubqunZG61RVnOJ/6pjO5XfG5XvOEtwAAgD8AAIA/MyeAPK5lrrommaS4jTyUs0bXp7kqjbw3AACAPwAAgD+aIWE8OMu1uw2CYD2MAUu+yI3aO238Or8AAIA/AACAP1b9b74n9EA/MH2JvXQyOb+wUQ2/nrn3PQAAAAAAAAAAsxgqvRycfLx7z6c+v8ZyPAWR5j1HvkW9AAAAAAAAgD9mxpK74ciXunstdjnL7Ho0EYm6Ouc7jrgAAIA/AACAP8CyP75YX8I+TPmXPnxLNb+fIn++UvOUPgAAAAAAAAAAAJBmu2EDsT++76G89KaJvnUfur1FFuK9AAAAAAAAAADzpqy9w5lculM+iznTcbw0V1DcOufzn7gAAIA/AACAP80Gwbz96zQ+zxSdPR1sIr8b12u9uss3PQAAAAAAAAAAZoi5PCmQYrrn1TA0TX1WMKHLKLqsVp2zAACAPwAAgD/Nr+s8XGtwuhDPDjh+EpQzCy9iO2q2I7cAAIA/AACAPzOzqbrDIgq8s85oO+XPUD1xLew88W6CvAAAgD8AAIA/mnXxu0gXuLpO1Zk94YFGthzR1bgzYzS1AACAPwAAgD9mVrq7wzFVuup3fbra6ES1NfJqOc24lDkAAIA/AACAP82S9jxjnrk/Qvl1Pp9ujrq7YFG8Ft/SPAAAAAAAAAAAM0MsO+FalrrNC/GzmnfYLZwECLvl3JQzAACAPwAAgD9m20Q96QDzPhsZMLypRku/BtLZPUvB/rwAAAAAAAAAAJpR/Du4Pts4AhExurK1A7Yq85k60NFUOQAAgD8AAIA/Zs4bu7jW7bky+L+6S+zAtTCxuDo79d05AACAPwAAgD+aeea64aaAupM5wroEwNO1hRh8O6XA4jkAAIA/AACAP7qSMz6DwZU/KrvoPmsgA78kM9M+66XxPgAAAAAAAAAAzS+VvKD9lz9zx9e9cihMv3BmKb3daDq9AAAAAAAAAACzs5q94e6Vuq5e4jfE0+Aym3QDOzPZArcAAIA/AACAP5oJxrqksHu5sk77vMqsnjCuamo7o8+9swAAgD8AAIA/M4tKu4GSoLz7GdU9SbJiPGx3MD3uDOg9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHrofW+XZ6MAWyUS7OMAXSUR0C/aHCTdLxqdX2UKGgGR0Bw3imwaBI4aAdLp2gIR0C/aHM90RvndX2UKGgGR0BzWvES/TLGaAdLrGgIR0C/aIRVU+9rdX2UKGgGR0By96uA7PpqaAdLq2gIR0C/aJN5IH1OdX2UKGgGR0ByT9cnmaH9aAdLlWgIR0C/aJXnEETydX2UKGgGR0B0H/H4oJAuaAdLsmgIR0C/aKnyI55rdX2UKGgGR0ByGaevpyIYaAdLnmgIR0C/aMSLhrFgdX2UKGgGR0BRSzVtoBaLaAdLXGgIR0C/aNIe9zwMdX2UKGgGR0B0AqQHRkVfaAdL3mgIR0C/aNZwCKaYdX2UKGgGR0BxqyU1Q66raAdLjGgIR0C/aTF8w5/9dX2UKGgGR0BxYmZlWfbsaAdLmWgIR0C/aUTgVGkOdX2UKGgGR0BxbNKZlWfcaAdLtmgIR0C/aWNZ7ojfdX2UKGgGR0BzeVbgTAWSaAdLrWgIR0C/aaLjtG/fdX2UKGgGR0By52O1fE4vaAdLwWgIR0C/aaKq814xdX2UKGgGR0BzeJu2qkuZaAdLuWgIR0C/aah7E5yVdX2UKGgGR0B0Eq2/i5uqaAdNnwFoCEdAv2nk8PnSv3V9lChoBkdAcJVQKrq+rWgHS6doCEdAv2oCbDuSfXV9lChoBkdAcdwOfNA1N2gHS5toCEdAv2oF2ECeVnV9lChoBkdAc+sgr6LwWmgHS69oCEdAv2oKcFyJbnV9lChoBkdAcrzbMotth2gHS6loCEdAv2oQ+0PYnXV9lChoBkdAcq+XN1QqJGgHS5NoCEdAv2ouus90R3V9lChoBkdAcZM2icoYvWgHS8VoCEdAv2pSu4gA63V9lChoBkdAc8PcJMQEp2gHS8NoCEdAv2pTPjXFtXV9lChoBkdAc7sNZvDP4WgHS75oCEdAv2pSaLGaQXV9lChoBkdAcaLH1e0G/2gHS7BoCEdAv2ptOi35OHV9lChoBkdAdAiS7oSteWgHS6ZoCEdAv2qXq8lHBnV9lChoBkdAcbA2/zreImgHS51oCEdAv2qnMY/FBXV9lChoBkdAcsmVWjoIOmgHS6toCEdAv2qmGDcuanV9lChoBkdAcdNfa6BiC2gHS7RoCEdAv2qifoRqXXV9lChoBkdAcpu/0ulGgGgHS55oCEdAv2qvlCCz1XV9lChoBkdAcZ2ZvUBnz2gHS5NoCEdAv2rT9xZMc3V9lChoBkdAcRNvTgEU02gHS7JoCEdAv2rY/9pAU3V9lChoBkdAcb1Ik7fYSWgHS5toCEdAv2rvaDf3vnV9lChoBkdAc/5NUOuq3mgHS9xoCEdAv2rx+iJwbXV9lChoBkdAcZTrCm/Fi2gHS5VoCEdAv2rx62OQyXV9lChoBkdAcgc4VymygWgHS6VoCEdAv37qgK4QSXV9lChoBkdAcv6B7eEZi2gHS69oCEdAv37xeQdS23V9lChoBkdAcJ6v38GcF2gHS5xoCEdAv371l05lv3V9lChoBkdAcgieCCjDbmgHS8hoCEdAv39A0HhS+HV9lChoBkdAcD93L3bmEGgHS6RoCEdAv39M7GNrCXV9lChoBkdAcTD2iL2pQ2gHS5hoCEdAv39yOAAhjnV9lChoBkdAcrqnWJ79h2gHS7FoCEdAv3/HPkaMrHV9lChoBkdASqlFz+3pfWgHS3loCEdAv3/PPKMefnV9lChoBkdAcrXJr+Hae2gHS8doCEdAv3/of/3nIXV9lChoBkdAckZx+az/qGgHS9BoCEdAv3/wVLzwt3V9lChoBkdAckugE2YOUmgHS4VoCEdAv4Ao9IPK+3V9lChoBkdAc5MHVwxWUGgHS71oCEdAv4BHZOBUaXV9lChoBkdAc4bchTwUg2gHS7toCEdAv4Bc/RmbsnV9lChoBkdAdBL+9rXUY2gHS99oCEdAv4BpHnU2DXV9lChoBkdAcwUR3u/lAGgHS8xoCEdAv4B2dK/VRXV9lChoBkdAcp6fs/pt8GgHS8FoCEdAv4CUa99MK3V9lChoBkdAcfJWluWKM2gHS6JoCEdAv4C0Gu9vj3V9lChoBkdAb7foB7u2JGgHS6loCEdAv4C1kiD/VHV9lChoBkdAchjscABDHGgHS+5oCEdAv4DXp+tr9HV9lChoBkdAct9V8CxNZmgHTTsBaAhHQL+BJMDfWMF1fZQoaAZHQHDEX/DLr5ZoB0vyaAhHQL+BTpeeFtd1fZQoaAZHQEVw7BfrrxBoB0tqaAhHQL+BTq814xF1fZQoaAZHQHG/UWdmQKdoB0u1aAhHQL+BefZVXFN1fZQoaAZHQHQCa6BiCrdoB0vvaAhHQL+Blqfe1rt1fZQoaAZHQHL89ZaFEiNoB0viaAhHQL+BrAD7qIJ1fZQoaAZHQHGDR/Aj6epoB0uuaAhHQL+Bvaews5J1fZQoaAZHQHIepbhWHUNoB0v+aAhHQL+ByzltCRh1fZQoaAZHQHDejOC5EtxoB0vSaAhHQL+B20SAYpF1fZQoaAZHQHHYYWcjJMhoB00dAWgIR0C/gfSWAwwkdX2UKGgGR0B0QBHRTjvNaAdNFQFoCEdAv4IkDgZTAHV9lChoBkdAcbhmjj7yhGgHTYkBaAhHQL+CPYDTz/Z1fZQoaAZHQHGROA/cFhZoB0uvaAhHQL+CXmMfigl1fZQoaAZHQHK1eFg2IftoB00ZAWgIR0C/gndZ3cHodX2UKGgGR0BwluqyWzF/aAdLjWgIR0C/goCowVTKdX2UKGgGR0Bwr/YI0IkaaAdL2GgIR0C/gpERradudX2UKGgGR0BxUUexOclPaAdNQwFoCEdAv4KX+uNgjXV9lChoBkdAc6UogV45cWgHS/NoCEdAv4LEs+V1OnV9lChoBkdAchjXpnpSrGgHS7JoCEdAv4LhL7Gec3V9lChoBkdAc5ilYU34sWgHS9JoCEdAv4L53t8eCHV9lChoBkdAc4mnKnvUjWgHS7toCEdAv4Mrsrupj3V9lChoBkdAcFiiz9jwx2gHS9doCEdAv4N5ZowmFHV9lChoBkdAcezPczqKQGgHTaEBaAhHQL+DjXzUZvV1fZQoaAZHQHOA5mRNh3JoB0vraAhHQL+DkNGViWp1fZQoaAZHQHLaZFXq7iBoB02FAWgIR0C/g7r/82rGdX2UKGgGR0ByiD8k2P1daAdLxGgIR0C/g/NdRiw0dX2UKGgGR0BwtCmP5pJxaAdLrmgIR0C/hB8S9M9KdX2UKGgGR0ByLqOsDGLlaAdLxmgIR0C/hCDyWiUQdX2UKGgGR0BwmNt2s7uEaAdLsGgIR0C/hDYmXw9adX2UKGgGR0ByfF16mfoSaAdL3WgIR0C/hHh+KCQLdX2UKGgGR0Bx2X8wYcebaAdNQwFoCEdAv4SNUHY6GXV9lChoBkdAchETK1XvIGgHS8NoCEdAv4SNcQiA2HV9lChoBkdAcy3kQf6oEWgHTQ4BaAhHQL+EmUI9kjJ1fZQoaAZHQHRpq7I1cdJoB00GAWgIR0C/hJ4B/7SBdX2UKGgGR0BvGkvIwM6SaAdLmGgIR0C/hOujmCAddX2UKGgGR0BxhwEzO5avaAdLt2gIR0C/hPGnTAnEdX2UKGgGR0BwmBqbjLjhaAdL8GgIR0C/hP/ZAY51dX2UKGgGR0BxI1X5nDiwaAdLtmgIR0C/hQfXTVlPdX2UKGgGR0BwY1pM6BAfaAdL5mgIR0C/hRyq6vq1dX2UKGgGR0Bw5u3d9Dx9aAdNHwJoCEdAv4VV+H8CP3V9lChoBkdAcG/rZrYXf2gHS91oCEdAv4W48+zMR3V9lChoBkdAcY0MQmNR32gHS8FoCEdAv4XBBMSK33V9lChoBkdAc5dVEd/8VGgHS/9oCEdAv4XkOQQtjHV9lChoBkdAcSE8HfMwDmgHTQgBaAhHQL+F7EuQIUt1fZQoaAZHQHEVZFb3XZpoB0u+aAhHQL+F7gQ6IWR1fZQoaAZHQHKoXiiqQzVoB0vWaAhHQL+F+J2MbWF1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 2448,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 32,
|
80 |
+
"n_steps": 512,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
Lunar_Lander_VSrinivas/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3ba0d882aa432f141f07176233955ad7fc81b929db14358a392aa11539f0bc8
|
3 |
+
size 87545
|
Lunar_Lander_VSrinivas/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ab69d19c79efb6d94f0b0d5b239cf96635209783107def11e5df43339ecfaae
|
3 |
+
size 43201
|
Lunar_Lander_VSrinivas/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Lunar_Lander_VSrinivas/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 285.18 +/- 16.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e9d6509d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e9d650a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e9d650af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e9d650b80>", "_build": "<function ActorCriticPolicy._build at 0x7f2e9d650c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e9d650ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e9d650d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e9d650dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e9d650e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e9d650ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e9d650f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e9d651000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2e9d64aa80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685335392641536128, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAICORz4gC4Y+tcDPvn/+H796PoE+ZbnWvgAAAAAAAAAAZmQVPBQalrorpd+6cyaRtbhLGru1cv45AACAPwAAgD8Qw0++kl4yPqOzzT5joyu/pfWqvv6Xoj4AAAAAAAAAAGbYDj4JwI8/ogmyPo/8DL/k2ak+CFuxPgAAAAAAAAAA8yq4PaVCtj+yBfc+3Cspvkj83D3Q/9k+AAAAAAAAAADNo4m8z6FevEIM9b0ZYuY8lakGPVrqfjwAAIA/AACAPwDAubqunZG61RVnOJ/6pjO5XfG5XvOEtwAAgD8AAIA/MyeAPK5lrrommaS4jTyUs0bXp7kqjbw3AACAPwAAgD+aIWE8OMu1uw2CYD2MAUu+yI3aO238Or8AAIA/AACAP1b9b74n9EA/MH2JvXQyOb+wUQ2/nrn3PQAAAAAAAAAAsxgqvRycfLx7z6c+v8ZyPAWR5j1HvkW9AAAAAAAAgD9mxpK74ciXunstdjnL7Ho0EYm6Ouc7jrgAAIA/AACAP8CyP75YX8I+TPmXPnxLNb+fIn++UvOUPgAAAAAAAAAAAJBmu2EDsT++76G89KaJvnUfur1FFuK9AAAAAAAAAADzpqy9w5lculM+iznTcbw0V1DcOufzn7gAAIA/AACAP80Gwbz96zQ+zxSdPR1sIr8b12u9uss3PQAAAAAAAAAAZoi5PCmQYrrn1TA0TX1WMKHLKLqsVp2zAACAPwAAgD/Nr+s8XGtwuhDPDjh+EpQzCy9iO2q2I7cAAIA/AACAPzOzqbrDIgq8s85oO+XPUD1xLew88W6CvAAAgD8AAIA/mnXxu0gXuLpO1Zk94YFGthzR1bgzYzS1AACAPwAAgD9mVrq7wzFVuup3fbra6ES1NfJqOc24lDkAAIA/AACAP82S9jxjnrk/Qvl1Pp9ujrq7YFG8Ft/SPAAAAAAAAAAAM0MsO+FalrrNC/GzmnfYLZwECLvl3JQzAACAPwAAgD9m20Q96QDzPhsZMLypRku/BtLZPUvB/rwAAAAAAAAAAJpR/Du4Pts4AhExurK1A7Yq85k60NFUOQAAgD8AAIA/Zs4bu7jW7bky+L+6S+zAtTCxuDo79d05AACAPwAAgD+aeea64aaAupM5wroEwNO1hRh8O6XA4jkAAIA/AACAP7qSMz6DwZU/KrvoPmsgA78kM9M+66XxPgAAAAAAAAAAzS+VvKD9lz9zx9e9cihMv3BmKb3daDq9AAAAAAAAAACzs5q94e6Vuq5e4jfE0+Aym3QDOzPZArcAAIA/AACAP5oJxrqksHu5sk77vMqsnjCuamo7o8+9swAAgD8AAIA/M4tKu4GSoLz7GdU9SbJiPGx3MD3uDOg9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHrofW+XZ6MAWyUS7OMAXSUR0C/aHCTdLxqdX2UKGgGR0Bw3imwaBI4aAdLp2gIR0C/aHM90RvndX2UKGgGR0BzWvES/TLGaAdLrGgIR0C/aIRVU+9rdX2UKGgGR0By96uA7PpqaAdLq2gIR0C/aJN5IH1OdX2UKGgGR0ByT9cnmaH9aAdLlWgIR0C/aJXnEETydX2UKGgGR0B0H/H4oJAuaAdLsmgIR0C/aKnyI55rdX2UKGgGR0ByGaevpyIYaAdLnmgIR0C/aMSLhrFgdX2UKGgGR0BRSzVtoBaLaAdLXGgIR0C/aNIe9zwMdX2UKGgGR0B0AqQHRkVfaAdL3mgIR0C/aNZwCKaYdX2UKGgGR0BxqyU1Q66raAdLjGgIR0C/aTF8w5/9dX2UKGgGR0BxYmZlWfbsaAdLmWgIR0C/aUTgVGkOdX2UKGgGR0BxbNKZlWfcaAdLtmgIR0C/aWNZ7ojfdX2UKGgGR0BzeVbgTAWSaAdLrWgIR0C/aaLjtG/fdX2UKGgGR0By52O1fE4vaAdLwWgIR0C/aaKq814xdX2UKGgGR0BzeJu2qkuZaAdLuWgIR0C/aah7E5yVdX2UKGgGR0B0Eq2/i5uqaAdNnwFoCEdAv2nk8PnSv3V9lChoBkdAcJVQKrq+rWgHS6doCEdAv2oCbDuSfXV9lChoBkdAcdwOfNA1N2gHS5toCEdAv2oF2ECeVnV9lChoBkdAc+sgr6LwWmgHS69oCEdAv2oKcFyJbnV9lChoBkdAcrzbMotth2gHS6loCEdAv2oQ+0PYnXV9lChoBkdAcq+XN1QqJGgHS5NoCEdAv2ouus90R3V9lChoBkdAcZM2icoYvWgHS8VoCEdAv2pSu4gA63V9lChoBkdAc8PcJMQEp2gHS8NoCEdAv2pTPjXFtXV9lChoBkdAc7sNZvDP4WgHS75oCEdAv2pSaLGaQXV9lChoBkdAcaLH1e0G/2gHS7BoCEdAv2ptOi35OHV9lChoBkdAdAiS7oSteWgHS6ZoCEdAv2qXq8lHBnV9lChoBkdAcbA2/zreImgHS51oCEdAv2qnMY/FBXV9lChoBkdAcsmVWjoIOmgHS6toCEdAv2qmGDcuanV9lChoBkdAcdNfa6BiC2gHS7RoCEdAv2qifoRqXXV9lChoBkdAcpu/0ulGgGgHS55oCEdAv2qvlCCz1XV9lChoBkdAcZ2ZvUBnz2gHS5NoCEdAv2rT9xZMc3V9lChoBkdAcRNvTgEU02gHS7JoCEdAv2rY/9pAU3V9lChoBkdAcb1Ik7fYSWgHS5toCEdAv2rvaDf3vnV9lChoBkdAc/5NUOuq3mgHS9xoCEdAv2rx+iJwbXV9lChoBkdAcZTrCm/Fi2gHS5VoCEdAv2rx62OQyXV9lChoBkdAcgc4VymygWgHS6VoCEdAv37qgK4QSXV9lChoBkdAcv6B7eEZi2gHS69oCEdAv37xeQdS23V9lChoBkdAcJ6v38GcF2gHS5xoCEdAv371l05lv3V9lChoBkdAcgieCCjDbmgHS8hoCEdAv39A0HhS+HV9lChoBkdAcD93L3bmEGgHS6RoCEdAv39M7GNrCXV9lChoBkdAcTD2iL2pQ2gHS5hoCEdAv39yOAAhjnV9lChoBkdAcrqnWJ79h2gHS7FoCEdAv3/HPkaMrHV9lChoBkdASqlFz+3pfWgHS3loCEdAv3/PPKMefnV9lChoBkdAcrXJr+Hae2gHS8doCEdAv3/of/3nIXV9lChoBkdAckZx+az/qGgHS9BoCEdAv3/wVLzwt3V9lChoBkdAckugE2YOUmgHS4VoCEdAv4Ao9IPK+3V9lChoBkdAc5MHVwxWUGgHS71oCEdAv4BHZOBUaXV9lChoBkdAc4bchTwUg2gHS7toCEdAv4Bc/RmbsnV9lChoBkdAdBL+9rXUY2gHS99oCEdAv4BpHnU2DXV9lChoBkdAcwUR3u/lAGgHS8xoCEdAv4B2dK/VRXV9lChoBkdAcp6fs/pt8GgHS8FoCEdAv4CUa99MK3V9lChoBkdAcfJWluWKM2gHS6JoCEdAv4C0Gu9vj3V9lChoBkdAb7foB7u2JGgHS6loCEdAv4C1kiD/VHV9lChoBkdAchjscABDHGgHS+5oCEdAv4DXp+tr9HV9lChoBkdAct9V8CxNZmgHTTsBaAhHQL+BJMDfWMF1fZQoaAZHQHDEX/DLr5ZoB0vyaAhHQL+BTpeeFtd1fZQoaAZHQEVw7BfrrxBoB0tqaAhHQL+BTq814xF1fZQoaAZHQHG/UWdmQKdoB0u1aAhHQL+BefZVXFN1fZQoaAZHQHQCa6BiCrdoB0vvaAhHQL+Blqfe1rt1fZQoaAZHQHL89ZaFEiNoB0viaAhHQL+BrAD7qIJ1fZQoaAZHQHGDR/Aj6epoB0uuaAhHQL+Bvaews5J1fZQoaAZHQHIepbhWHUNoB0v+aAhHQL+ByzltCRh1fZQoaAZHQHDejOC5EtxoB0vSaAhHQL+B20SAYpF1fZQoaAZHQHHYYWcjJMhoB00dAWgIR0C/gfSWAwwkdX2UKGgGR0B0QBHRTjvNaAdNFQFoCEdAv4IkDgZTAHV9lChoBkdAcbhmjj7yhGgHTYkBaAhHQL+CPYDTz/Z1fZQoaAZHQHGROA/cFhZoB0uvaAhHQL+CXmMfigl1fZQoaAZHQHK1eFg2IftoB00ZAWgIR0C/gndZ3cHodX2UKGgGR0BwluqyWzF/aAdLjWgIR0C/goCowVTKdX2UKGgGR0Bwr/YI0IkaaAdL2GgIR0C/gpERradudX2UKGgGR0BxUUexOclPaAdNQwFoCEdAv4KX+uNgjXV9lChoBkdAc6UogV45cWgHS/NoCEdAv4LEs+V1OnV9lChoBkdAchjXpnpSrGgHS7JoCEdAv4LhL7Gec3V9lChoBkdAc5ilYU34sWgHS9JoCEdAv4L53t8eCHV9lChoBkdAc4mnKnvUjWgHS7toCEdAv4Mrsrupj3V9lChoBkdAcFiiz9jwx2gHS9doCEdAv4N5ZowmFHV9lChoBkdAcezPczqKQGgHTaEBaAhHQL+DjXzUZvV1fZQoaAZHQHOA5mRNh3JoB0vraAhHQL+DkNGViWp1fZQoaAZHQHLaZFXq7iBoB02FAWgIR0C/g7r/82rGdX2UKGgGR0ByiD8k2P1daAdLxGgIR0C/g/NdRiw0dX2UKGgGR0BwtCmP5pJxaAdLrmgIR0C/hB8S9M9KdX2UKGgGR0ByLqOsDGLlaAdLxmgIR0C/hCDyWiUQdX2UKGgGR0BwmNt2s7uEaAdLsGgIR0C/hDYmXw9adX2UKGgGR0ByfF16mfoSaAdL3WgIR0C/hHh+KCQLdX2UKGgGR0Bx2X8wYcebaAdNQwFoCEdAv4SNUHY6GXV9lChoBkdAchETK1XvIGgHS8NoCEdAv4SNcQiA2HV9lChoBkdAcy3kQf6oEWgHTQ4BaAhHQL+EmUI9kjJ1fZQoaAZHQHRpq7I1cdJoB00GAWgIR0C/hJ4B/7SBdX2UKGgGR0BvGkvIwM6SaAdLmGgIR0C/hOujmCAddX2UKGgGR0BxhwEzO5avaAdLt2gIR0C/hPGnTAnEdX2UKGgGR0BwmBqbjLjhaAdL8GgIR0C/hP/ZAY51dX2UKGgGR0BxI1X5nDiwaAdLtmgIR0C/hQfXTVlPdX2UKGgGR0BwY1pM6BAfaAdL5mgIR0C/hRyq6vq1dX2UKGgGR0Bw5u3d9Dx9aAdNHwJoCEdAv4VV+H8CP3V9lChoBkdAcG/rZrYXf2gHS91oCEdAv4W48+zMR3V9lChoBkdAcY0MQmNR32gHS8FoCEdAv4XBBMSK33V9lChoBkdAc5dVEd/8VGgHS/9oCEdAv4XkOQQtjHV9lChoBkdAcSE8HfMwDmgHTQgBaAhHQL+F7EuQIUt1fZQoaAZHQHEVZFb3XZpoB0u+aAhHQL+F7gQ6IWR1fZQoaAZHQHKoXiiqQzVoB0vWaAhHQL+F+J2MbWF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2448, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (179 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 285.1821559533235, "std_reward": 16.054516566679354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-29T07:13:00.046288"}
|