vsrinivas commited on
Commit
557a47d
·
1 Parent(s): d50aea2

Pushing the 2nd version of Lunar lander RL model to HF Hub

Browse files
Lunar_Lander_VSrinivas.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe71b7d86d6069d64bc8cb9504ba9ddf173e3d070a3fe66523a6501d0a248afc
3
+ size 146833
Lunar_Lander_VSrinivas/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
Lunar_Lander_VSrinivas/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e9d6509d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e9d650a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e9d650af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e9d650b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2e9d650c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2e9d650ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e9d650d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e9d650dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2e9d650e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e9d650ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e9d650f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e9d651000>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2e9d64aa80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685335392641536128,
30
+ "learning_rate": 0.0005,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAICORz4gC4Y+tcDPvn/+H796PoE+ZbnWvgAAAAAAAAAAZmQVPBQalrorpd+6cyaRtbhLGru1cv45AACAPwAAgD8Qw0++kl4yPqOzzT5joyu/pfWqvv6Xoj4AAAAAAAAAAGbYDj4JwI8/ogmyPo/8DL/k2ak+CFuxPgAAAAAAAAAA8yq4PaVCtj+yBfc+3Cspvkj83D3Q/9k+AAAAAAAAAADNo4m8z6FevEIM9b0ZYuY8lakGPVrqfjwAAIA/AACAPwDAubqunZG61RVnOJ/6pjO5XfG5XvOEtwAAgD8AAIA/MyeAPK5lrrommaS4jTyUs0bXp7kqjbw3AACAPwAAgD+aIWE8OMu1uw2CYD2MAUu+yI3aO238Or8AAIA/AACAP1b9b74n9EA/MH2JvXQyOb+wUQ2/nrn3PQAAAAAAAAAAsxgqvRycfLx7z6c+v8ZyPAWR5j1HvkW9AAAAAAAAgD9mxpK74ciXunstdjnL7Ho0EYm6Ouc7jrgAAIA/AACAP8CyP75YX8I+TPmXPnxLNb+fIn++UvOUPgAAAAAAAAAAAJBmu2EDsT++76G89KaJvnUfur1FFuK9AAAAAAAAAADzpqy9w5lculM+iznTcbw0V1DcOufzn7gAAIA/AACAP80Gwbz96zQ+zxSdPR1sIr8b12u9uss3PQAAAAAAAAAAZoi5PCmQYrrn1TA0TX1WMKHLKLqsVp2zAACAPwAAgD/Nr+s8XGtwuhDPDjh+EpQzCy9iO2q2I7cAAIA/AACAPzOzqbrDIgq8s85oO+XPUD1xLew88W6CvAAAgD8AAIA/mnXxu0gXuLpO1Zk94YFGthzR1bgzYzS1AACAPwAAgD9mVrq7wzFVuup3fbra6ES1NfJqOc24lDkAAIA/AACAP82S9jxjnrk/Qvl1Pp9ujrq7YFG8Ft/SPAAAAAAAAAAAM0MsO+FalrrNC/GzmnfYLZwECLvl3JQzAACAPwAAgD9m20Q96QDzPhsZMLypRku/BtLZPUvB/rwAAAAAAAAAAJpR/Du4Pts4AhExurK1A7Yq85k60NFUOQAAgD8AAIA/Zs4bu7jW7bky+L+6S+zAtTCxuDo79d05AACAPwAAgD+aeea64aaAupM5wroEwNO1hRh8O6XA4jkAAIA/AACAP7qSMz6DwZU/KrvoPmsgA78kM9M+66XxPgAAAAAAAAAAzS+VvKD9lz9zx9e9cihMv3BmKb3daDq9AAAAAAAAAACzs5q94e6Vuq5e4jfE0+Aym3QDOzPZArcAAIA/AACAP5oJxrqksHu5sk77vMqsnjCuamo7o8+9swAAgD8AAIA/M4tKu4GSoLz7GdU9SbJiPGx3MD3uDOg9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0027007999999999477,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHrofW+XZ6MAWyUS7OMAXSUR0C/aHCTdLxqdX2UKGgGR0Bw3imwaBI4aAdLp2gIR0C/aHM90RvndX2UKGgGR0BzWvES/TLGaAdLrGgIR0C/aIRVU+9rdX2UKGgGR0By96uA7PpqaAdLq2gIR0C/aJN5IH1OdX2UKGgGR0ByT9cnmaH9aAdLlWgIR0C/aJXnEETydX2UKGgGR0B0H/H4oJAuaAdLsmgIR0C/aKnyI55rdX2UKGgGR0ByGaevpyIYaAdLnmgIR0C/aMSLhrFgdX2UKGgGR0BRSzVtoBaLaAdLXGgIR0C/aNIe9zwMdX2UKGgGR0B0AqQHRkVfaAdL3mgIR0C/aNZwCKaYdX2UKGgGR0BxqyU1Q66raAdLjGgIR0C/aTF8w5/9dX2UKGgGR0BxYmZlWfbsaAdLmWgIR0C/aUTgVGkOdX2UKGgGR0BxbNKZlWfcaAdLtmgIR0C/aWNZ7ojfdX2UKGgGR0BzeVbgTAWSaAdLrWgIR0C/aaLjtG/fdX2UKGgGR0By52O1fE4vaAdLwWgIR0C/aaKq814xdX2UKGgGR0BzeJu2qkuZaAdLuWgIR0C/aah7E5yVdX2UKGgGR0B0Eq2/i5uqaAdNnwFoCEdAv2nk8PnSv3V9lChoBkdAcJVQKrq+rWgHS6doCEdAv2oCbDuSfXV9lChoBkdAcdwOfNA1N2gHS5toCEdAv2oF2ECeVnV9lChoBkdAc+sgr6LwWmgHS69oCEdAv2oKcFyJbnV9lChoBkdAcrzbMotth2gHS6loCEdAv2oQ+0PYnXV9lChoBkdAcq+XN1QqJGgHS5NoCEdAv2ouus90R3V9lChoBkdAcZM2icoYvWgHS8VoCEdAv2pSu4gA63V9lChoBkdAc8PcJMQEp2gHS8NoCEdAv2pTPjXFtXV9lChoBkdAc7sNZvDP4WgHS75oCEdAv2pSaLGaQXV9lChoBkdAcaLH1e0G/2gHS7BoCEdAv2ptOi35OHV9lChoBkdAdAiS7oSteWgHS6ZoCEdAv2qXq8lHBnV9lChoBkdAcbA2/zreImgHS51oCEdAv2qnMY/FBXV9lChoBkdAcsmVWjoIOmgHS6toCEdAv2qmGDcuanV9lChoBkdAcdNfa6BiC2gHS7RoCEdAv2qifoRqXXV9lChoBkdAcpu/0ulGgGgHS55oCEdAv2qvlCCz1XV9lChoBkdAcZ2ZvUBnz2gHS5NoCEdAv2rT9xZMc3V9lChoBkdAcRNvTgEU02gHS7JoCEdAv2rY/9pAU3V9lChoBkdAcb1Ik7fYSWgHS5toCEdAv2rvaDf3vnV9lChoBkdAc/5NUOuq3mgHS9xoCEdAv2rx+iJwbXV9lChoBkdAcZTrCm/Fi2gHS5VoCEdAv2rx62OQyXV9lChoBkdAcgc4VymygWgHS6VoCEdAv37qgK4QSXV9lChoBkdAcv6B7eEZi2gHS69oCEdAv37xeQdS23V9lChoBkdAcJ6v38GcF2gHS5xoCEdAv371l05lv3V9lChoBkdAcgieCCjDbmgHS8hoCEdAv39A0HhS+HV9lChoBkdAcD93L3bmEGgHS6RoCEdAv39M7GNrCXV9lChoBkdAcTD2iL2pQ2gHS5hoCEdAv39yOAAhjnV9lChoBkdAcrqnWJ79h2gHS7FoCEdAv3/HPkaMrHV9lChoBkdASqlFz+3pfWgHS3loCEdAv3/PPKMefnV9lChoBkdAcrXJr+Hae2gHS8doCEdAv3/of/3nIXV9lChoBkdAckZx+az/qGgHS9BoCEdAv3/wVLzwt3V9lChoBkdAckugE2YOUmgHS4VoCEdAv4Ao9IPK+3V9lChoBkdAc5MHVwxWUGgHS71oCEdAv4BHZOBUaXV9lChoBkdAc4bchTwUg2gHS7toCEdAv4Bc/RmbsnV9lChoBkdAdBL+9rXUY2gHS99oCEdAv4BpHnU2DXV9lChoBkdAcwUR3u/lAGgHS8xoCEdAv4B2dK/VRXV9lChoBkdAcp6fs/pt8GgHS8FoCEdAv4CUa99MK3V9lChoBkdAcfJWluWKM2gHS6JoCEdAv4C0Gu9vj3V9lChoBkdAb7foB7u2JGgHS6loCEdAv4C1kiD/VHV9lChoBkdAchjscABDHGgHS+5oCEdAv4DXp+tr9HV9lChoBkdAct9V8CxNZmgHTTsBaAhHQL+BJMDfWMF1fZQoaAZHQHDEX/DLr5ZoB0vyaAhHQL+BTpeeFtd1fZQoaAZHQEVw7BfrrxBoB0tqaAhHQL+BTq814xF1fZQoaAZHQHG/UWdmQKdoB0u1aAhHQL+BefZVXFN1fZQoaAZHQHQCa6BiCrdoB0vvaAhHQL+Blqfe1rt1fZQoaAZHQHL89ZaFEiNoB0viaAhHQL+BrAD7qIJ1fZQoaAZHQHGDR/Aj6epoB0uuaAhHQL+Bvaews5J1fZQoaAZHQHIepbhWHUNoB0v+aAhHQL+ByzltCRh1fZQoaAZHQHDejOC5EtxoB0vSaAhHQL+B20SAYpF1fZQoaAZHQHHYYWcjJMhoB00dAWgIR0C/gfSWAwwkdX2UKGgGR0B0QBHRTjvNaAdNFQFoCEdAv4IkDgZTAHV9lChoBkdAcbhmjj7yhGgHTYkBaAhHQL+CPYDTz/Z1fZQoaAZHQHGROA/cFhZoB0uvaAhHQL+CXmMfigl1fZQoaAZHQHK1eFg2IftoB00ZAWgIR0C/gndZ3cHodX2UKGgGR0BwluqyWzF/aAdLjWgIR0C/goCowVTKdX2UKGgGR0Bwr/YI0IkaaAdL2GgIR0C/gpERradudX2UKGgGR0BxUUexOclPaAdNQwFoCEdAv4KX+uNgjXV9lChoBkdAc6UogV45cWgHS/NoCEdAv4LEs+V1OnV9lChoBkdAchjXpnpSrGgHS7JoCEdAv4LhL7Gec3V9lChoBkdAc5ilYU34sWgHS9JoCEdAv4L53t8eCHV9lChoBkdAc4mnKnvUjWgHS7toCEdAv4Mrsrupj3V9lChoBkdAcFiiz9jwx2gHS9doCEdAv4N5ZowmFHV9lChoBkdAcezPczqKQGgHTaEBaAhHQL+DjXzUZvV1fZQoaAZHQHOA5mRNh3JoB0vraAhHQL+DkNGViWp1fZQoaAZHQHLaZFXq7iBoB02FAWgIR0C/g7r/82rGdX2UKGgGR0ByiD8k2P1daAdLxGgIR0C/g/NdRiw0dX2UKGgGR0BwtCmP5pJxaAdLrmgIR0C/hB8S9M9KdX2UKGgGR0ByLqOsDGLlaAdLxmgIR0C/hCDyWiUQdX2UKGgGR0BwmNt2s7uEaAdLsGgIR0C/hDYmXw9adX2UKGgGR0ByfF16mfoSaAdL3WgIR0C/hHh+KCQLdX2UKGgGR0Bx2X8wYcebaAdNQwFoCEdAv4SNUHY6GXV9lChoBkdAchETK1XvIGgHS8NoCEdAv4SNcQiA2HV9lChoBkdAcy3kQf6oEWgHTQ4BaAhHQL+EmUI9kjJ1fZQoaAZHQHRpq7I1cdJoB00GAWgIR0C/hJ4B/7SBdX2UKGgGR0BvGkvIwM6SaAdLmGgIR0C/hOujmCAddX2UKGgGR0BxhwEzO5avaAdLt2gIR0C/hPGnTAnEdX2UKGgGR0BwmBqbjLjhaAdL8GgIR0C/hP/ZAY51dX2UKGgGR0BxI1X5nDiwaAdLtmgIR0C/hQfXTVlPdX2UKGgGR0BwY1pM6BAfaAdL5mgIR0C/hRyq6vq1dX2UKGgGR0Bw5u3d9Dx9aAdNHwJoCEdAv4VV+H8CP3V9lChoBkdAcG/rZrYXf2gHS91oCEdAv4W48+zMR3V9lChoBkdAcY0MQmNR32gHS8FoCEdAv4XBBMSK33V9lChoBkdAc5dVEd/8VGgHS/9oCEdAv4XkOQQtjHV9lChoBkdAcSE8HfMwDmgHTQgBaAhHQL+F7EuQIUt1fZQoaAZHQHEVZFb3XZpoB0u+aAhHQL+F7gQ6IWR1fZQoaAZHQHKoXiiqQzVoB0vWaAhHQL+F+J2MbWF1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 2448,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 32,
80
+ "n_steps": 512,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.99,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 32,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
Lunar_Lander_VSrinivas/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3ba0d882aa432f141f07176233955ad7fc81b929db14358a392aa11539f0bc8
3
+ size 87545
Lunar_Lander_VSrinivas/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ab69d19c79efb6d94f0b0d5b239cf96635209783107def11e5df43339ecfaae
3
+ size 43201
Lunar_Lander_VSrinivas/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunar_Lander_VSrinivas/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 285.18 +/- 16.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e9d6509d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e9d650a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e9d650af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e9d650b80>", "_build": "<function ActorCriticPolicy._build at 0x7f2e9d650c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e9d650ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2e9d650d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e9d650dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e9d650e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e9d650ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e9d650f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e9d651000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2e9d64aa80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685335392641536128, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAICORz4gC4Y+tcDPvn/+H796PoE+ZbnWvgAAAAAAAAAAZmQVPBQalrorpd+6cyaRtbhLGru1cv45AACAPwAAgD8Qw0++kl4yPqOzzT5joyu/pfWqvv6Xoj4AAAAAAAAAAGbYDj4JwI8/ogmyPo/8DL/k2ak+CFuxPgAAAAAAAAAA8yq4PaVCtj+yBfc+3Cspvkj83D3Q/9k+AAAAAAAAAADNo4m8z6FevEIM9b0ZYuY8lakGPVrqfjwAAIA/AACAPwDAubqunZG61RVnOJ/6pjO5XfG5XvOEtwAAgD8AAIA/MyeAPK5lrrommaS4jTyUs0bXp7kqjbw3AACAPwAAgD+aIWE8OMu1uw2CYD2MAUu+yI3aO238Or8AAIA/AACAP1b9b74n9EA/MH2JvXQyOb+wUQ2/nrn3PQAAAAAAAAAAsxgqvRycfLx7z6c+v8ZyPAWR5j1HvkW9AAAAAAAAgD9mxpK74ciXunstdjnL7Ho0EYm6Ouc7jrgAAIA/AACAP8CyP75YX8I+TPmXPnxLNb+fIn++UvOUPgAAAAAAAAAAAJBmu2EDsT++76G89KaJvnUfur1FFuK9AAAAAAAAAADzpqy9w5lculM+iznTcbw0V1DcOufzn7gAAIA/AACAP80Gwbz96zQ+zxSdPR1sIr8b12u9uss3PQAAAAAAAAAAZoi5PCmQYrrn1TA0TX1WMKHLKLqsVp2zAACAPwAAgD/Nr+s8XGtwuhDPDjh+EpQzCy9iO2q2I7cAAIA/AACAPzOzqbrDIgq8s85oO+XPUD1xLew88W6CvAAAgD8AAIA/mnXxu0gXuLpO1Zk94YFGthzR1bgzYzS1AACAPwAAgD9mVrq7wzFVuup3fbra6ES1NfJqOc24lDkAAIA/AACAP82S9jxjnrk/Qvl1Pp9ujrq7YFG8Ft/SPAAAAAAAAAAAM0MsO+FalrrNC/GzmnfYLZwECLvl3JQzAACAPwAAgD9m20Q96QDzPhsZMLypRku/BtLZPUvB/rwAAAAAAAAAAJpR/Du4Pts4AhExurK1A7Yq85k60NFUOQAAgD8AAIA/Zs4bu7jW7bky+L+6S+zAtTCxuDo79d05AACAPwAAgD+aeea64aaAupM5wroEwNO1hRh8O6XA4jkAAIA/AACAP7qSMz6DwZU/KrvoPmsgA78kM9M+66XxPgAAAAAAAAAAzS+VvKD9lz9zx9e9cihMv3BmKb3daDq9AAAAAAAAAACzs5q94e6Vuq5e4jfE0+Aym3QDOzPZArcAAIA/AACAP5oJxrqksHu5sk77vMqsnjCuamo7o8+9swAAgD8AAIA/M4tKu4GSoLz7GdU9SbJiPGx3MD3uDOg9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHrofW+XZ6MAWyUS7OMAXSUR0C/aHCTdLxqdX2UKGgGR0Bw3imwaBI4aAdLp2gIR0C/aHM90RvndX2UKGgGR0BzWvES/TLGaAdLrGgIR0C/aIRVU+9rdX2UKGgGR0By96uA7PpqaAdLq2gIR0C/aJN5IH1OdX2UKGgGR0ByT9cnmaH9aAdLlWgIR0C/aJXnEETydX2UKGgGR0B0H/H4oJAuaAdLsmgIR0C/aKnyI55rdX2UKGgGR0ByGaevpyIYaAdLnmgIR0C/aMSLhrFgdX2UKGgGR0BRSzVtoBaLaAdLXGgIR0C/aNIe9zwMdX2UKGgGR0B0AqQHRkVfaAdL3mgIR0C/aNZwCKaYdX2UKGgGR0BxqyU1Q66raAdLjGgIR0C/aTF8w5/9dX2UKGgGR0BxYmZlWfbsaAdLmWgIR0C/aUTgVGkOdX2UKGgGR0BxbNKZlWfcaAdLtmgIR0C/aWNZ7ojfdX2UKGgGR0BzeVbgTAWSaAdLrWgIR0C/aaLjtG/fdX2UKGgGR0By52O1fE4vaAdLwWgIR0C/aaKq814xdX2UKGgGR0BzeJu2qkuZaAdLuWgIR0C/aah7E5yVdX2UKGgGR0B0Eq2/i5uqaAdNnwFoCEdAv2nk8PnSv3V9lChoBkdAcJVQKrq+rWgHS6doCEdAv2oCbDuSfXV9lChoBkdAcdwOfNA1N2gHS5toCEdAv2oF2ECeVnV9lChoBkdAc+sgr6LwWmgHS69oCEdAv2oKcFyJbnV9lChoBkdAcrzbMotth2gHS6loCEdAv2oQ+0PYnXV9lChoBkdAcq+XN1QqJGgHS5NoCEdAv2ouus90R3V9lChoBkdAcZM2icoYvWgHS8VoCEdAv2pSu4gA63V9lChoBkdAc8PcJMQEp2gHS8NoCEdAv2pTPjXFtXV9lChoBkdAc7sNZvDP4WgHS75oCEdAv2pSaLGaQXV9lChoBkdAcaLH1e0G/2gHS7BoCEdAv2ptOi35OHV9lChoBkdAdAiS7oSteWgHS6ZoCEdAv2qXq8lHBnV9lChoBkdAcbA2/zreImgHS51oCEdAv2qnMY/FBXV9lChoBkdAcsmVWjoIOmgHS6toCEdAv2qmGDcuanV9lChoBkdAcdNfa6BiC2gHS7RoCEdAv2qifoRqXXV9lChoBkdAcpu/0ulGgGgHS55oCEdAv2qvlCCz1XV9lChoBkdAcZ2ZvUBnz2gHS5NoCEdAv2rT9xZMc3V9lChoBkdAcRNvTgEU02gHS7JoCEdAv2rY/9pAU3V9lChoBkdAcb1Ik7fYSWgHS5toCEdAv2rvaDf3vnV9lChoBkdAc/5NUOuq3mgHS9xoCEdAv2rx+iJwbXV9lChoBkdAcZTrCm/Fi2gHS5VoCEdAv2rx62OQyXV9lChoBkdAcgc4VymygWgHS6VoCEdAv37qgK4QSXV9lChoBkdAcv6B7eEZi2gHS69oCEdAv37xeQdS23V9lChoBkdAcJ6v38GcF2gHS5xoCEdAv371l05lv3V9lChoBkdAcgieCCjDbmgHS8hoCEdAv39A0HhS+HV9lChoBkdAcD93L3bmEGgHS6RoCEdAv39M7GNrCXV9lChoBkdAcTD2iL2pQ2gHS5hoCEdAv39yOAAhjnV9lChoBkdAcrqnWJ79h2gHS7FoCEdAv3/HPkaMrHV9lChoBkdASqlFz+3pfWgHS3loCEdAv3/PPKMefnV9lChoBkdAcrXJr+Hae2gHS8doCEdAv3/of/3nIXV9lChoBkdAckZx+az/qGgHS9BoCEdAv3/wVLzwt3V9lChoBkdAckugE2YOUmgHS4VoCEdAv4Ao9IPK+3V9lChoBkdAc5MHVwxWUGgHS71oCEdAv4BHZOBUaXV9lChoBkdAc4bchTwUg2gHS7toCEdAv4Bc/RmbsnV9lChoBkdAdBL+9rXUY2gHS99oCEdAv4BpHnU2DXV9lChoBkdAcwUR3u/lAGgHS8xoCEdAv4B2dK/VRXV9lChoBkdAcp6fs/pt8GgHS8FoCEdAv4CUa99MK3V9lChoBkdAcfJWluWKM2gHS6JoCEdAv4C0Gu9vj3V9lChoBkdAb7foB7u2JGgHS6loCEdAv4C1kiD/VHV9lChoBkdAchjscABDHGgHS+5oCEdAv4DXp+tr9HV9lChoBkdAct9V8CxNZmgHTTsBaAhHQL+BJMDfWMF1fZQoaAZHQHDEX/DLr5ZoB0vyaAhHQL+BTpeeFtd1fZQoaAZHQEVw7BfrrxBoB0tqaAhHQL+BTq814xF1fZQoaAZHQHG/UWdmQKdoB0u1aAhHQL+BefZVXFN1fZQoaAZHQHQCa6BiCrdoB0vvaAhHQL+Blqfe1rt1fZQoaAZHQHL89ZaFEiNoB0viaAhHQL+BrAD7qIJ1fZQoaAZHQHGDR/Aj6epoB0uuaAhHQL+Bvaews5J1fZQoaAZHQHIepbhWHUNoB0v+aAhHQL+ByzltCRh1fZQoaAZHQHDejOC5EtxoB0vSaAhHQL+B20SAYpF1fZQoaAZHQHHYYWcjJMhoB00dAWgIR0C/gfSWAwwkdX2UKGgGR0B0QBHRTjvNaAdNFQFoCEdAv4IkDgZTAHV9lChoBkdAcbhmjj7yhGgHTYkBaAhHQL+CPYDTz/Z1fZQoaAZHQHGROA/cFhZoB0uvaAhHQL+CXmMfigl1fZQoaAZHQHK1eFg2IftoB00ZAWgIR0C/gndZ3cHodX2UKGgGR0BwluqyWzF/aAdLjWgIR0C/goCowVTKdX2UKGgGR0Bwr/YI0IkaaAdL2GgIR0C/gpERradudX2UKGgGR0BxUUexOclPaAdNQwFoCEdAv4KX+uNgjXV9lChoBkdAc6UogV45cWgHS/NoCEdAv4LEs+V1OnV9lChoBkdAchjXpnpSrGgHS7JoCEdAv4LhL7Gec3V9lChoBkdAc5ilYU34sWgHS9JoCEdAv4L53t8eCHV9lChoBkdAc4mnKnvUjWgHS7toCEdAv4Mrsrupj3V9lChoBkdAcFiiz9jwx2gHS9doCEdAv4N5ZowmFHV9lChoBkdAcezPczqKQGgHTaEBaAhHQL+DjXzUZvV1fZQoaAZHQHOA5mRNh3JoB0vraAhHQL+DkNGViWp1fZQoaAZHQHLaZFXq7iBoB02FAWgIR0C/g7r/82rGdX2UKGgGR0ByiD8k2P1daAdLxGgIR0C/g/NdRiw0dX2UKGgGR0BwtCmP5pJxaAdLrmgIR0C/hB8S9M9KdX2UKGgGR0ByLqOsDGLlaAdLxmgIR0C/hCDyWiUQdX2UKGgGR0BwmNt2s7uEaAdLsGgIR0C/hDYmXw9adX2UKGgGR0ByfF16mfoSaAdL3WgIR0C/hHh+KCQLdX2UKGgGR0Bx2X8wYcebaAdNQwFoCEdAv4SNUHY6GXV9lChoBkdAchETK1XvIGgHS8NoCEdAv4SNcQiA2HV9lChoBkdAcy3kQf6oEWgHTQ4BaAhHQL+EmUI9kjJ1fZQoaAZHQHRpq7I1cdJoB00GAWgIR0C/hJ4B/7SBdX2UKGgGR0BvGkvIwM6SaAdLmGgIR0C/hOujmCAddX2UKGgGR0BxhwEzO5avaAdLt2gIR0C/hPGnTAnEdX2UKGgGR0BwmBqbjLjhaAdL8GgIR0C/hP/ZAY51dX2UKGgGR0BxI1X5nDiwaAdLtmgIR0C/hQfXTVlPdX2UKGgGR0BwY1pM6BAfaAdL5mgIR0C/hRyq6vq1dX2UKGgGR0Bw5u3d9Dx9aAdNHwJoCEdAv4VV+H8CP3V9lChoBkdAcG/rZrYXf2gHS91oCEdAv4W48+zMR3V9lChoBkdAcY0MQmNR32gHS8FoCEdAv4XBBMSK33V9lChoBkdAc5dVEd/8VGgHS/9oCEdAv4XkOQQtjHV9lChoBkdAcSE8HfMwDmgHTQgBaAhHQL+F7EuQIUt1fZQoaAZHQHEVZFb3XZpoB0u+aAhHQL+F7gQ6IWR1fZQoaAZHQHKoXiiqQzVoB0vWaAhHQL+F+J2MbWF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2448, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.1821559533235, "std_reward": 16.054516566679354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-29T07:13:00.046288"}