File size: 1,663 Bytes
ff914a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: msc_imasc_openslr_festfox_Whisper_Medium
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# msc_imasc_openslr_festfox_Whisper_Medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0471
- Wer: 25.1306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0748 | 0.2 | 500 | 0.1198 | 51.5053 |
| 0.0445 | 0.4 | 1000 | 0.0727 | 35.6805 |
| 0.0351 | 0.59 | 1500 | 0.0563 | 30.1319 |
| 0.0267 | 0.79 | 2000 | 0.0471 | 25.1306 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|