File size: 4,322 Bytes
2f7a924 7d75ffe 2f7a924 930fca3 2f7a924 076febc 891509a 7d75ffe 076febc 930fca3 076febc 891509a 7d75ffe 076febc 930fca3 076febc 2f7a924 891509a 2f7a924 082e1a0 155da85 082e1a0 344db46 8c97faa 082e1a0 891509a 082e1a0 344db46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
base_model: facebook/w2v-bert-2.0
license: mit
metrics:
- wer
model-index:
- name: W2V2-BERT-withLM-Malayalam by Bajiyo Baiju, Kavya Manohar
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: OpenSLR Malayalam -Test
type: vrclc/openslr63
config: ml
split: test
args: ml
metrics:
- type: wer
value: 18.23
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Google Fleurs
type: google/fleurs
config: ml
split: test
args: ml
metrics:
- type: wer
value: 31.92
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Mozilla Common Voice
type: mozilla-foundation/common_voice_16_1
config: ml
split: test
args: ml
metrics:
- type: wer
value: 49.79
name: WER
datasets:
- vrclc/festvox-iiith-ml
- vrclc/openslr63
- vrclc/imasc_slr
- mozilla-foundation/common_voice_17_0
- smcproject/MSC
- kavyamanohar/ml-sentences
language:
- ml
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# W2V2-BERT-withLM-Malayalam
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/openslr63), [CV16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_0) .
It achieves the following results on the validation set : [OpenSLR-Test](https://huggingface.co/vrclc/openslr63):
- Loss: 0.1722
- Wer: 0.1299
Trigram Language Model Trained using KENLM Library on [kavyamanohar/ml-sentences](https://huggingface.co/datasets/kavyamanohar/ml-sentences) dataset
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1416 | 0.46 | 600 | 0.3393 | 0.4616 |
| 0.1734 | 0.92 | 1200 | 0.2414 | 0.3493 |
| 0.1254 | 1.38 | 1800 | 0.2205 | 0.2963 |
| 0.1097 | 1.84 | 2400 | 0.2157 | 0.3133 |
| 0.0923 | 2.3 | 3000 | 0.1854 | 0.2473 |
| 0.0792 | 2.76 | 3600 | 0.1939 | 0.2471 |
| 0.0696 | 3.22 | 4200 | 0.1720 | 0.2282 |
| 0.0589 | 3.68 | 4800 | 0.1768 | 0.2013 |
| 0.0552 | 4.14 | 5400 | 0.1635 | 0.1864 |
| 0.0437 | 4.6 | 6000 | 0.1501 | 0.1826 |
| 0.0408 | 5.06 | 6600 | 0.1500 | 0.1645 |
| 0.0314 | 5.52 | 7200 | 0.1559 | 0.1655 |
| 0.0317 | 5.98 | 7800 | 0.1448 | 0.1553 |
| 0.022 | 6.44 | 8400 | 0.1592 | 0.1590 |
| 0.0218 | 6.9 | 9000 | 0.1431 | 0.1458 |
| 0.0154 | 7.36 | 9600 | 0.1514 | 0.1366 |
| 0.0141 | 7.82 | 10200 | 0.1540 | 0.1383 |
| 0.0113 | 8.28 | 10800 | 0.1558 | 0.1391 |
| 0.0085 | 8.74 | 11400 | 0.1612 | 0.1356 |
| 0.0072 | 9.2 | 12000 | 0.1697 | 0.1289 |
| 0.0046 | 9.66 | 12600 | 0.1722 | 0.1299 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 |