File size: 4,322 Bytes
2f7a924
 
 
 
 
 
 
 
 
 
 
7d75ffe
 
 
2f7a924
 
 
 
 
930fca3
2f7a924
076febc
 
 
891509a
7d75ffe
 
076febc
 
 
 
 
930fca3
076febc
 
 
 
891509a
7d75ffe
 
076febc
 
 
 
 
930fca3
076febc
2f7a924
 
 
 
 
 
891509a
2f7a924
 
 
 
082e1a0
 
 
 
155da85
082e1a0
344db46
 
8c97faa
082e1a0
 
 
891509a
 
082e1a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344db46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
base_model: facebook/w2v-bert-2.0
license: mit
metrics:
- wer
model-index:
- name: W2V2-BERT-withLM-Malayalam by Bajiyo Baiju, Kavya Manohar
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: OpenSLR Malayalam -Test
      type: vrclc/openslr63
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 18.23
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Google Fleurs
      type: google/fleurs
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 31.92
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Mozilla Common Voice
      type: mozilla-foundation/common_voice_16_1
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 49.79
      name: WER
datasets:
- vrclc/festvox-iiith-ml
- vrclc/openslr63
- vrclc/imasc_slr
- mozilla-foundation/common_voice_17_0
- smcproject/MSC
- kavyamanohar/ml-sentences
language:
- ml
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# W2V2-BERT-withLM-Malayalam

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the  [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/openslr63), [CV16](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_0)  .

It achieves the following results on the validation set : [OpenSLR-Test](https://huggingface.co/vrclc/openslr63):
- Loss: 0.1722
- Wer: 0.1299

Trigram Language Model Trained using KENLM Library on [kavyamanohar/ml-sentences](https://huggingface.co/datasets/kavyamanohar/ml-sentences) dataset

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1416        | 0.46  | 600   | 0.3393          | 0.4616 |
| 0.1734        | 0.92  | 1200  | 0.2414          | 0.3493 |
| 0.1254        | 1.38  | 1800  | 0.2205          | 0.2963 |
| 0.1097        | 1.84  | 2400  | 0.2157          | 0.3133 |
| 0.0923        | 2.3   | 3000  | 0.1854          | 0.2473 |
| 0.0792        | 2.76  | 3600  | 0.1939          | 0.2471 |
| 0.0696        | 3.22  | 4200  | 0.1720          | 0.2282 |
| 0.0589        | 3.68  | 4800  | 0.1768          | 0.2013 |
| 0.0552        | 4.14  | 5400  | 0.1635          | 0.1864 |
| 0.0437        | 4.6   | 6000  | 0.1501          | 0.1826 |
| 0.0408        | 5.06  | 6600  | 0.1500          | 0.1645 |
| 0.0314        | 5.52  | 7200  | 0.1559          | 0.1655 |
| 0.0317        | 5.98  | 7800  | 0.1448          | 0.1553 |
| 0.022         | 6.44  | 8400  | 0.1592          | 0.1590 |
| 0.0218        | 6.9   | 9000  | 0.1431          | 0.1458 |
| 0.0154        | 7.36  | 9600  | 0.1514          | 0.1366 |
| 0.0141        | 7.82  | 10200 | 0.1540          | 0.1383 |
| 0.0113        | 8.28  | 10800 | 0.1558          | 0.1391 |
| 0.0085        | 8.74  | 11400 | 0.1612          | 0.1356 |
| 0.0072        | 9.2   | 12000 | 0.1697          | 0.1289 |
| 0.0046        | 9.66  | 12600 | 0.1722          | 0.1299 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1