kavyamanohar commited on
Commit
4ea099c
1 Parent(s): 237a436

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -5
README.md CHANGED
@@ -5,9 +5,8 @@ datasets:
5
  - thennal/IMaSC
6
  - vrclc/festvox-iiith-ml
7
  - vrclc/openslr63
8
- - thennal/msc
9
  - mozilla-foundation/common_voice_16_1
10
-
11
  metrics:
12
  - wer
13
  tags:
@@ -57,12 +56,10 @@ model-index:
57
 
58
  ---
59
 
60
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
61
- should probably proofread and complete it, then remove this comment. -->
62
 
63
  # w2v-bert-2.0-nonstudio_and_studioRecords
64
 
65
- This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an these datasets: [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/openslr63), [common_voice_16_1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1)
66
  It achieves the following results on the evaluation set:
67
  - Loss: 0.1722
68
  - Wer: 0.1299
 
5
  - thennal/IMaSC
6
  - vrclc/festvox-iiith-ml
7
  - vrclc/openslr63
8
+ - smcproject/msc
9
  - mozilla-foundation/common_voice_16_1
 
10
  metrics:
11
  - wer
12
  tags:
 
56
 
57
  ---
58
 
 
 
59
 
60
  # w2v-bert-2.0-nonstudio_and_studioRecords
61
 
62
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an these datasets: [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/festvox-iiith-ml), [common_voice_16_1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1)
63
  It achieves the following results on the evaluation set:
64
  - Loss: 0.1722
65
  - Wer: 0.1299