|  | --- | 
					
						
						|  | license: bigscience-bloom-rail-1.0 | 
					
						
						|  | language: | 
					
						
						|  | - vi | 
					
						
						|  | - en | 
					
						
						|  | library_name: transformers | 
					
						
						|  | pipeline_tag: text-generation | 
					
						
						|  | tags: | 
					
						
						|  | - bloom | 
					
						
						|  | - causal-lm | 
					
						
						|  | - pytorch | 
					
						
						|  | model-index: | 
					
						
						|  | - name: vlsp-2023-vllm/hoa-7b | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | name: Word prediction | 
					
						
						|  | type: text-generation | 
					
						
						|  | dataset: | 
					
						
						|  | type: vlsp-2023-vllm/vi_lambada | 
					
						
						|  | name: vi_lambada | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: Perplexity | 
					
						
						|  | value: 8.110657542682734 | 
					
						
						|  | - task: | 
					
						
						|  | name: Fewshot Translation | 
					
						
						|  | type: translation | 
					
						
						|  | dataset: | 
					
						
						|  | type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations | 
					
						
						|  | name: English to Vietnamese Formal/Informal translation | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: SacreBLEU | 
					
						
						|  | value: 25.9 | 
					
						
						|  | datasets: | 
					
						
						|  | - vlsp-2023-vllm/vi_lambada | 
					
						
						|  | metrics: | 
					
						
						|  | - perplexity | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Hoa 7B (Bloom architecture) | 
					
						
						|  |  | 
					
						
						|  | Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. | 
					
						
						|  | Hoa was trained on part of the Common Crawl dataset in Vietnamese and English. | 
					
						
						|  |  | 
					
						
						|  | Details will be available soon. | 
					
						
						|  |  | 
					
						
						|  | To contact us, mail to: [email protected] (Lê Anh Cường) | [email protected] (Hiếu) | [email protected] (Nguyễn Việt Cường) | 
					
						
						|  |  | 
					
						
						|  | ### How to use | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b") | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True) | 
					
						
						|  |  | 
					
						
						|  | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
						|  | model.to(device) | 
					
						
						|  |  | 
					
						
						|  | prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số" | 
					
						
						|  | input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device) | 
					
						
						|  |  | 
					
						
						|  | gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1) | 
					
						
						|  |  | 
					
						
						|  | print(tokenizer.batch_decode(gen_tokens)[0]) | 
					
						
						|  | ``` |