File size: 2,541 Bytes
785dc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3532f
785dc21
 
 
 
 
 
 
 
 
ca3532f
 
785dc21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3532f
785dc21
 
 
 
 
ca3532f
 
 
 
 
 
 
 
 
 
 
 
785dc21
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-eurosat-albumentations
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6366906474820144
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# convnext-tiny-224-finetuned-eurosat-albumentations

This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8091
- Accuracy: 0.6367

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1311        | 0.96  | 19   | 1.0751          | 0.3813   |
| 1.0477        | 1.97  | 39   | 1.0354          | 0.5036   |
| 0.9932        | 2.99  | 59   | 1.0054          | 0.5144   |
| 0.9445        | 4.0   | 79   | 0.9702          | 0.5432   |
| 0.8911        | 4.96  | 98   | 0.9461          | 0.5647   |
| 0.8339        | 5.97  | 118  | 0.9079          | 0.5827   |
| 0.7923        | 6.99  | 138  | 0.8767          | 0.5899   |
| 0.751         | 8.0   | 158  | 0.8521          | 0.6187   |
| 0.7222        | 8.96  | 177  | 0.8315          | 0.6223   |
| 0.688         | 9.97  | 197  | 0.8183          | 0.6259   |
| 0.6734        | 10.99 | 217  | 0.8091          | 0.6367   |
| 0.6734        | 11.54 | 228  | 0.8090          | 0.6331   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2