vladislav-savko commited on
Commit
328a2b1
1 Parent(s): a83afb0

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:6184
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-large-en
10
+ widget:
11
+ - source_sentence: Agioi Konstantinos kai Eleni
12
+ sentences:
13
+ - Hello
14
+ - InputData
15
+ - InputData
16
+ - source_sentence: Looking for a property in Greece with a price up to [int2],[int2],
17
+ no television, central heating, alarm system, [int0]-[int0] bedrooms, and parking
18
+ sentences:
19
+ - Undo
20
+ - InputData
21
+ - InputData
22
+ - source_sentence: Εθνομάρτυρας Κυπριανός
23
+ sentences:
24
+ - InputData
25
+ - InputData
26
+ - Restart
27
+ - source_sentence: Yenierenkoy
28
+ sentences:
29
+ - InputData
30
+ - InputData
31
+ - InfoAbout
32
+ - source_sentence: Nicosie
33
+ sentences:
34
+ - InputData
35
+ - InputData
36
+ - InfoAbout
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ ---
40
+
41
+ # SentenceTransformer based on BAAI/bge-large-en
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Output Dimensionality:** 1024 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ (2): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("vladislav-savko/bge-v-0.0.1")
89
+ # Run inference
90
+ sentences = [
91
+ 'Nicosie',
92
+ 'InputData',
93
+ 'InfoAbout',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 1024]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 6,184 training samples
149
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | anchor | positive | negative |
152
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
153
+ | type | string | string | string |
154
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.59 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.45 tokens</li><li>max: 9 tokens</li></ul> |
155
+ * Samples:
156
+ | anchor | positive | negative |
157
+ |:---------------------------------------------------------------------------------------------------------------------------------|:-----------------------|:-------------------------|
158
+ | <code>I need a property with [int0] bathrooms, unfurnished, floor area of [int1], in Cyprus, with cable and WiFi internet</code> | <code>InputData</code> | <code>Undo</code> |
159
+ | <code>Avgalida</code> | <code>InputData</code> | <code>Hello</code> |
160
+ | <code>Στρουμπί</code> | <code>InputData</code> | <code>ShowByIndex</code> |
161
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Training Hyperparameters
170
+ #### Non-Default Hyperparameters
171
+
172
+ - `per_device_train_batch_size`: 16
173
+ - `num_train_epochs`: 1
174
+ - `warmup_ratio`: 0.1
175
+ - `fp16`: True
176
+ - `batch_sampler`: no_duplicates
177
+
178
+ #### All Hyperparameters
179
+ <details><summary>Click to expand</summary>
180
+
181
+ - `overwrite_output_dir`: False
182
+ - `do_predict`: False
183
+ - `eval_strategy`: no
184
+ - `prediction_loss_only`: True
185
+ - `per_device_train_batch_size`: 16
186
+ - `per_device_eval_batch_size`: 8
187
+ - `per_gpu_train_batch_size`: None
188
+ - `per_gpu_eval_batch_size`: None
189
+ - `gradient_accumulation_steps`: 1
190
+ - `eval_accumulation_steps`: None
191
+ - `torch_empty_cache_steps`: None
192
+ - `learning_rate`: 5e-05
193
+ - `weight_decay`: 0.0
194
+ - `adam_beta1`: 0.9
195
+ - `adam_beta2`: 0.999
196
+ - `adam_epsilon`: 1e-08
197
+ - `max_grad_norm`: 1.0
198
+ - `num_train_epochs`: 1
199
+ - `max_steps`: -1
200
+ - `lr_scheduler_type`: linear
201
+ - `lr_scheduler_kwargs`: {}
202
+ - `warmup_ratio`: 0.1
203
+ - `warmup_steps`: 0
204
+ - `log_level`: passive
205
+ - `log_level_replica`: warning
206
+ - `log_on_each_node`: True
207
+ - `logging_nan_inf_filter`: True
208
+ - `save_safetensors`: True
209
+ - `save_on_each_node`: False
210
+ - `save_only_model`: False
211
+ - `restore_callback_states_from_checkpoint`: False
212
+ - `no_cuda`: False
213
+ - `use_cpu`: False
214
+ - `use_mps_device`: False
215
+ - `seed`: 42
216
+ - `data_seed`: None
217
+ - `jit_mode_eval`: False
218
+ - `use_ipex`: False
219
+ - `bf16`: False
220
+ - `fp16`: True
221
+ - `fp16_opt_level`: O1
222
+ - `half_precision_backend`: auto
223
+ - `bf16_full_eval`: False
224
+ - `fp16_full_eval`: False
225
+ - `tf32`: None
226
+ - `local_rank`: 0
227
+ - `ddp_backend`: None
228
+ - `tpu_num_cores`: None
229
+ - `tpu_metrics_debug`: False
230
+ - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
+ - `past_index`: -1
235
+ - `disable_tqdm`: False
236
+ - `remove_unused_columns`: True
237
+ - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
+ - `ignore_data_skip`: False
240
+ - `fsdp`: []
241
+ - `fsdp_min_num_params`: 0
242
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
243
+ - `fsdp_transformer_layer_cls_to_wrap`: None
244
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
245
+ - `deepspeed`: None
246
+ - `label_smoothing_factor`: 0.0
247
+ - `optim`: adamw_torch
248
+ - `optim_args`: None
249
+ - `adafactor`: False
250
+ - `group_by_length`: False
251
+ - `length_column_name`: length
252
+ - `ddp_find_unused_parameters`: None
253
+ - `ddp_bucket_cap_mb`: None
254
+ - `ddp_broadcast_buffers`: False
255
+ - `dataloader_pin_memory`: True
256
+ - `dataloader_persistent_workers`: False
257
+ - `skip_memory_metrics`: True
258
+ - `use_legacy_prediction_loop`: False
259
+ - `push_to_hub`: False
260
+ - `resume_from_checkpoint`: None
261
+ - `hub_model_id`: None
262
+ - `hub_strategy`: every_save
263
+ - `hub_private_repo`: False
264
+ - `hub_always_push`: False
265
+ - `gradient_checkpointing`: False
266
+ - `gradient_checkpointing_kwargs`: None
267
+ - `include_inputs_for_metrics`: False
268
+ - `eval_do_concat_batches`: True
269
+ - `fp16_backend`: auto
270
+ - `push_to_hub_model_id`: None
271
+ - `push_to_hub_organization`: None
272
+ - `mp_parameters`:
273
+ - `auto_find_batch_size`: False
274
+ - `full_determinism`: False
275
+ - `torchdynamo`: None
276
+ - `ray_scope`: last
277
+ - `ddp_timeout`: 1800
278
+ - `torch_compile`: False
279
+ - `torch_compile_backend`: None
280
+ - `torch_compile_mode`: None
281
+ - `dispatch_batches`: None
282
+ - `split_batches`: None
283
+ - `include_tokens_per_second`: False
284
+ - `include_num_input_tokens_seen`: False
285
+ - `neftune_noise_alpha`: None
286
+ - `optim_target_modules`: None
287
+ - `batch_eval_metrics`: False
288
+ - `eval_on_start`: False
289
+ - `eval_use_gather_object`: False
290
+ - `prompts`: None
291
+ - `batch_sampler`: no_duplicates
292
+ - `multi_dataset_batch_sampler`: proportional
293
+
294
+ </details>
295
+
296
+ ### Training Logs
297
+ | Epoch | Step | Training Loss |
298
+ |:------:|:----:|:-------------:|
299
+ | 0.2584 | 100 | 0.3938 |
300
+ | 0.5168 | 200 | 0.0 |
301
+ | 0.7752 | 300 | 0.0 |
302
+
303
+
304
+ ### Framework Versions
305
+ - Python: 3.10.12
306
+ - Sentence Transformers: 3.3.1
307
+ - Transformers: 4.44.2
308
+ - PyTorch: 2.5.1+cu121
309
+ - Accelerate: 1.2.1
310
+ - Datasets: 2.19.0
311
+ - Tokenizers: 0.19.1
312
+
313
+ ## Citation
314
+
315
+ ### BibTeX
316
+
317
+ #### Sentence Transformers
318
+ ```bibtex
319
+ @inproceedings{reimers-2019-sentence-bert,
320
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
321
+ author = "Reimers, Nils and Gurevych, Iryna",
322
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
323
+ month = "11",
324
+ year = "2019",
325
+ publisher = "Association for Computational Linguistics",
326
+ url = "https://arxiv.org/abs/1908.10084",
327
+ }
328
+ ```
329
+
330
+ #### MultipleNegativesRankingLoss
331
+ ```bibtex
332
+ @misc{henderson2017efficient,
333
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
334
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
335
+ year={2017},
336
+ eprint={1705.00652},
337
+ archivePrefix={arXiv},
338
+ primaryClass={cs.CL}
339
+ }
340
+ ```
341
+
342
+ <!--
343
+ ## Glossary
344
+
345
+ *Clearly define terms in order to be accessible across audiences.*
346
+ -->
347
+
348
+ <!--
349
+ ## Model Card Authors
350
+
351
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
352
+ -->
353
+
354
+ <!--
355
+ ## Model Card Contact
356
+
357
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
358
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e251cb46091b29693e3078a8beb1a73a6709287cc061d76b5a604c6bb93e5316
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff