File size: 1,943 Bytes
faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 d00c4d2 faeb8d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
from typing import Any, Dict
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set dtype based on device capability
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 8 else torch.float16
class EndpointHandler:
def __init__(self, path="vkamra/llama_finetune_clockit"):
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
tokenizer.padding_side = "left" # For proper padding alignment
# Load model with fallback for non-8bit environments
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(
path,
return_dict=True,
device_map="auto",
load_in_8bit=True,
torch_dtype=dtype,
trust_remote_code=True,
)
else:
model = AutoModelForCausalLM.from_pretrained(
path,
return_dict=True,
torch_dtype=torch.float32, # Full precision for CPU
trust_remote_code=True,
)
# Configure generation settings
generation_config = model.generation_config
generation_config.max_new_tokens = 60
generation_config.temperature = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
self.generation_config = generation_config
# Initialize pipeline
self.pipeline = transformers.pipeline(
"text-generation", model=model, tokenizer=tokenizer
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
prompt = data.pop("inputs", data)
result = self.pipeline(prompt, generation_config=self.generation_config)
return result
|