visheratin commited on
Commit
6ce6524
1 Parent(s): a59a2af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -2
README.md CHANGED
@@ -3,6 +3,99 @@ tags:
3
  - clip
4
  library_name: open_clip
5
  pipeline_tag: zero-shot-image-classification
6
- license: mit
 
 
7
  ---
8
- # Model card for nllb-siglip-mrl-base
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  - clip
4
  library_name: open_clip
5
  pipeline_tag: zero-shot-image-classification
6
+ license: cc-by-nc-4.0
7
+ datasets:
8
+ - visheratin/laion-coco-nllb
9
  ---
10
+
11
+ ## Model Summary
12
+
13
+ NLLB-SigLIP-MRL is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-600M) and an image encoder from the
14
+ [SigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-384) model. This allows us to extend the model capabilities
15
+ to 201 languages of the Flores-200. This version of the model was trained using a variation of [Matryoshka Representation learning](https://arxiv.org/abs/2205.13147)
16
+ to enable the generation of embeddings of sizes [32, 64, 128, 256, 512] in addition to the original 768. Based on the benchmarks below, embeddings of sizes 256 and 512
17
+ preserve 90%+ of the full embedding quality.
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/609ede05121df5de54007033/PP5GJOgM2YVQM4RSWHKtq.png)
20
+
21
+ The full embedding model sets new state-of-the-art for multilingual image and text retrieval on both XTD10 and Crossmodal-3600.
22
+
23
+ ## How to use
24
+
25
+ ### Variable resolutions
26
+
27
+ <a target="_blank" href="https://colab.research.google.com/drive/1gYKUm3urhhHapaFbJ6GD1Fl3pI5g-fjM">
28
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
29
+ </a>
30
+
31
+ If you want to use the model that supports variable embedding sizes, you can do it as follows:
32
+
33
+ ```
34
+ !pip install -U transformers open_clip_torch
35
+ ```
36
+
37
+ ```
38
+ from transformers import AutoModel
39
+ from PIL import Image
40
+ import requests
41
+ import torch
42
+
43
+ model = AutoModel.from_pretrained("visheratin/nllb-siglip-mrl-base", device="cpu", trust_remote_code=True)
44
+
45
+ image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg"
46
+ image = Image.open(requests.get(image_path, stream=True).raw)
47
+
48
+ class_options = ["бабочка", "butterfly", "kat"]
49
+ class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"]
50
+
51
+ image_logits, text_logits = model.get_logits(
52
+ images=[image],
53
+ texts=class_options,
54
+ langs=class_langs,
55
+ resolution=512 # set resolution here or set `None` to use the original resolution
56
+ )
57
+
58
+ print(torch.softmax(image_logits, dim=1))
59
+ ```
60
+
61
+ ### OpenCLIP
62
+
63
+ This model is also integrated into OpenCLIP so that you can use it as any other model:
64
+
65
+ ```
66
+ !pip install -U open_clip_torch
67
+ ```
68
+
69
+ ```
70
+ from open_clip import create_model_from_pretrained, get_tokenizer
71
+ from PIL import Image
72
+ import requests
73
+ import torch
74
+
75
+ model, transform = create_model_from_pretrained("nllb-clip-base-siglip", "mrl", device="cuda")
76
+
77
+ tokenizer = get_tokenizer("nllb-clip-base-siglip")
78
+
79
+ class_options = ["бабочка", "butterfly", "kat"]
80
+ class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"]
81
+
82
+ text_inputs = []
83
+ for i in range(len(class_options)):
84
+ tokenizer.set_language(class_langs[i])
85
+ text_inputs.append(tokenizer(class_options[i]))
86
+ text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda")
87
+
88
+ image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg"
89
+ image = Image.open(requests.get(image_path, stream=True).raw)
90
+
91
+ image_inputs = transform(image).unsqueeze(0).to("cuda")
92
+
93
+ with torch.inference_mode():
94
+ logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs)
95
+
96
+ print(logits_per_image.softmax(dim=-1))
97
+ ```
98
+
99
+ ## Acknowledgements
100
+
101
+ I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources.