vipinbansal179
commited on
Commit
·
099c51d
1
Parent(s):
bf38a0c
Add SetFit model
Browse files- 1_Pooling/config.json +7 -0
- README.md +965 -1
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,967 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: 'pay rs.20.00 / c 91xx3402 ganeshramkudisodebur 22 - 09 - 2023 . ref:3648483126
|
12 |
+
. query ? click http://m.paytm.me/care : ppbl'
|
13 |
+
- text: inform m / s shree salasar balaji tex transfer rs . 10000.00 account . xxxxxxxx2869
|
14 |
+
yes bank account rtgs / neft / imp
|
15 |
+
- text: undelivered!\nyour hdfc bank debit card 9875 / c 8494\nreason ch shift . case
|
16 |
+
address change , update seamless card delivery > > hdfcbk.io/a/0nzoo052
|
17 |
+
- text: rs 5000.00 debit / c upi 23 - 09 - 2023 14:21:12 vpa 35890012004230@cnrb -
|
18 |
+
( upi ref 363290511260)-federal bank
|
19 |
+
- text: 472448 otp set hdfc bank 4 digit login pin . share otp you?call 18002586161
|
20 |
+
pipeline_tag: text-classification
|
21 |
+
inference: true
|
22 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
23 |
+
model-index:
|
24 |
+
- name: SetFit with sentence-transformers/all-mpnet-base-v2
|
25 |
+
results:
|
26 |
+
- task:
|
27 |
+
type: text-classification
|
28 |
+
name: Text Classification
|
29 |
+
dataset:
|
30 |
+
name: Unknown
|
31 |
+
type: unknown
|
32 |
+
split: test
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 0.9715909090909091
|
36 |
+
name: Accuracy
|
37 |
---
|
38 |
+
|
39 |
+
# SetFit with sentence-transformers/all-mpnet-base-v2
|
40 |
+
|
41 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
42 |
+
|
43 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
44 |
+
|
45 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
46 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
47 |
+
|
48 |
+
## Model Details
|
49 |
+
|
50 |
+
### Model Description
|
51 |
+
- **Model Type:** SetFit
|
52 |
+
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
53 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
54 |
+
- **Maximum Sequence Length:** 384 tokens
|
55 |
+
- **Number of Classes:** 3 classes
|
56 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
57 |
+
<!-- - **Language:** Unknown -->
|
58 |
+
<!-- - **License:** Unknown -->
|
59 |
+
|
60 |
+
### Model Sources
|
61 |
+
|
62 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
63 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
64 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
+
|
66 |
+
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| 2 | <ul><li>'840989 otp proceed canara bank mobile banking . valid 15 minute . share otp . - canara bank . kbl8a1ju0mt'</li><li>'cheque . 000102 issue riya collection rs . 12,000.00 present / c xxxxx546157 return unpaid insufficient fund . team idfc bank'</li><li>'avl bal / c xxxx0959 10 - jul-2022 06:06:24 inr 0.00 . combine avl bal inr 0.00 . use mb app track / c - kotak bank'</li></ul> |
|
70 |
+
| 0 | <ul><li>'/ c . xxxxxxxx7146 debit rs.11933.00 16 - 09 - 23 / c xxxxxxxx4716 credit ( imp ref 325908759095 ) . warm regard , yes bank'</li><li>'send rs.290.00 kotak bank ac x4524 bharatpe90727843812@yesbankltd 13-10-23.upi ref 328684167136 . , kotak.com/fraud'</li><li>'rs.295 transfer / c ... 4322 : lien_marking_fo . total bal : rs.188.8cr . avlbl amt : rs.609.97(28 - 06 - 2022 16:39:53 ) - bank baroda'</li></ul> |
|
71 |
+
| 1 | <ul><li>'rs 15000credite / c xx4524via neft neofirst technology india private- utr ref hsbcn23276508097 ; avail . bal.:rs 215180.62kotak bank'</li><li>'/ c : xx6775 credit rs.60.00 14 - 11 - 2023 10:47:49 upi - id 8733076955@omni ( upi ref 331800008439).-canara bank'</li><li>'rs.28 credit / c ... 7783 upi/323962847509 kiwicashback_ax . total bal : rs.122751.36cr . avlbl amt : rs.94671.36(27 - 08 - 2023 15:37:01 ) - bank baroda'</li></ul> |
|
72 |
+
|
73 |
+
## Evaluation
|
74 |
+
|
75 |
+
### Metrics
|
76 |
+
| Label | Accuracy |
|
77 |
+
|:--------|:---------|
|
78 |
+
| **all** | 0.9716 |
|
79 |
+
|
80 |
+
## Uses
|
81 |
+
|
82 |
+
### Direct Use for Inference
|
83 |
+
|
84 |
+
First install the SetFit library:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install setfit
|
88 |
+
```
|
89 |
+
|
90 |
+
Then you can load this model and run inference.
|
91 |
+
|
92 |
+
```python
|
93 |
+
from setfit import SetFitModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SetFitModel.from_pretrained("vipinbansal179/SetFit_sms_Analyzer1")
|
97 |
+
# Run inference
|
98 |
+
preds = model("472448 otp set hdfc bank 4 digit login pin . share otp you?call 18002586161")
|
99 |
+
```
|
100 |
+
|
101 |
+
<!--
|
102 |
+
### Downstream Use
|
103 |
+
|
104 |
+
*List how someone could finetune this model on their own dataset.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Out-of-Scope Use
|
109 |
+
|
110 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
## Bias, Risks and Limitations
|
115 |
+
|
116 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Recommendations
|
121 |
+
|
122 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
## Training Details
|
126 |
+
|
127 |
+
### Training Set Metrics
|
128 |
+
| Training set | Min | Median | Max |
|
129 |
+
|:-------------|:----|:-------|:----|
|
130 |
+
| Word count | 4 | 23.17 | 65 |
|
131 |
+
|
132 |
+
| Label | Training Sample Count |
|
133 |
+
|:------|:----------------------|
|
134 |
+
| 0 | 231 |
|
135 |
+
| 1 | 131 |
|
136 |
+
| 2 | 338 |
|
137 |
+
|
138 |
+
### Training Hyperparameters
|
139 |
+
- batch_size: (16, 16)
|
140 |
+
- num_epochs: (2, 2)
|
141 |
+
- max_steps: -1
|
142 |
+
- sampling_strategy: oversampling
|
143 |
+
- body_learning_rate: (2e-05, 1e-05)
|
144 |
+
- head_learning_rate: 0.01
|
145 |
+
- loss: CosineSimilarityLoss
|
146 |
+
- distance_metric: cosine_distance
|
147 |
+
- margin: 0.25
|
148 |
+
- end_to_end: False
|
149 |
+
- use_amp: False
|
150 |
+
- warmup_proportion: 0.1
|
151 |
+
- seed: 42
|
152 |
+
- eval_max_steps: -1
|
153 |
+
- load_best_model_at_end: True
|
154 |
+
|
155 |
+
### Training Results
|
156 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
157 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
158 |
+
| 0.0001 | 1 | 0.2945 | - |
|
159 |
+
| 0.0026 | 50 | 0.3574 | - |
|
160 |
+
| 0.0052 | 100 | 0.2512 | - |
|
161 |
+
| 0.0079 | 150 | 0.2319 | - |
|
162 |
+
| 0.0105 | 200 | 0.2787 | - |
|
163 |
+
| 0.0131 | 250 | 0.2129 | - |
|
164 |
+
| 0.0157 | 300 | 0.2189 | - |
|
165 |
+
| 0.0183 | 350 | 0.0857 | - |
|
166 |
+
| 0.0210 | 400 | 0.0932 | - |
|
167 |
+
| 0.0236 | 450 | 0.065 | - |
|
168 |
+
| 0.0262 | 500 | 0.0553 | - |
|
169 |
+
| 0.0288 | 550 | 0.0674 | - |
|
170 |
+
| 0.0314 | 600 | 0.0239 | - |
|
171 |
+
| 0.0341 | 650 | 0.0054 | - |
|
172 |
+
| 0.0367 | 700 | 0.0025 | - |
|
173 |
+
| 0.0393 | 750 | 0.002 | - |
|
174 |
+
| 0.0419 | 800 | 0.0007 | - |
|
175 |
+
| 0.0446 | 850 | 0.001 | - |
|
176 |
+
| 0.0472 | 900 | 0.0008 | - |
|
177 |
+
| 0.0498 | 950 | 0.0008 | - |
|
178 |
+
| 0.0524 | 1000 | 0.0003 | - |
|
179 |
+
| 0.0550 | 1050 | 0.0012 | - |
|
180 |
+
| 0.0577 | 1100 | 0.002 | - |
|
181 |
+
| 0.0603 | 1150 | 0.0192 | - |
|
182 |
+
| 0.0629 | 1200 | 0.0041 | - |
|
183 |
+
| 0.0655 | 1250 | 0.0002 | - |
|
184 |
+
| 0.0681 | 1300 | 0.0001 | - |
|
185 |
+
| 0.0708 | 1350 | 0.0001 | - |
|
186 |
+
| 0.0734 | 1400 | 0.0001 | - |
|
187 |
+
| 0.0760 | 1450 | 0.0004 | - |
|
188 |
+
| 0.0786 | 1500 | 0.0003 | - |
|
189 |
+
| 0.0812 | 1550 | 0.0002 | - |
|
190 |
+
| 0.0839 | 1600 | 0.0004 | - |
|
191 |
+
| 0.0865 | 1650 | 0.0002 | - |
|
192 |
+
| 0.0891 | 1700 | 0.0002 | - |
|
193 |
+
| 0.0917 | 1750 | 0.0001 | - |
|
194 |
+
| 0.0943 | 1800 | 0.0001 | - |
|
195 |
+
| 0.0970 | 1850 | 0.0001 | - |
|
196 |
+
| 0.0996 | 1900 | 0.0001 | - |
|
197 |
+
| 0.1022 | 1950 | 0.0001 | - |
|
198 |
+
| 0.1048 | 2000 | 0.0001 | - |
|
199 |
+
| 0.1075 | 2050 | 0.0015 | - |
|
200 |
+
| 0.1101 | 2100 | 0.0001 | - |
|
201 |
+
| 0.1127 | 2150 | 0.0001 | - |
|
202 |
+
| 0.1153 | 2200 | 0.0001 | - |
|
203 |
+
| 0.1179 | 2250 | 0.0001 | - |
|
204 |
+
| 0.1206 | 2300 | 0.0 | - |
|
205 |
+
| 0.1232 | 2350 | 0.0001 | - |
|
206 |
+
| 0.1258 | 2400 | 0.0 | - |
|
207 |
+
| 0.1284 | 2450 | 0.0001 | - |
|
208 |
+
| 0.1310 | 2500 | 0.0 | - |
|
209 |
+
| 0.1337 | 2550 | 0.0001 | - |
|
210 |
+
| 0.1363 | 2600 | 0.0 | - |
|
211 |
+
| 0.1389 | 2650 | 0.0001 | - |
|
212 |
+
| 0.1415 | 2700 | 0.0 | - |
|
213 |
+
| 0.1441 | 2750 | 0.0 | - |
|
214 |
+
| 0.1468 | 2800 | 0.0 | - |
|
215 |
+
| 0.1494 | 2850 | 0.0 | - |
|
216 |
+
| 0.1520 | 2900 | 0.0 | - |
|
217 |
+
| 0.1546 | 2950 | 0.0 | - |
|
218 |
+
| 0.1572 | 3000 | 0.0 | - |
|
219 |
+
| 0.1599 | 3050 | 0.0 | - |
|
220 |
+
| 0.1625 | 3100 | 0.0 | - |
|
221 |
+
| 0.1651 | 3150 | 0.0 | - |
|
222 |
+
| 0.1677 | 3200 | 0.0 | - |
|
223 |
+
| 0.1704 | 3250 | 0.0 | - |
|
224 |
+
| 0.1730 | 3300 | 0.0 | - |
|
225 |
+
| 0.1756 | 3350 | 0.0 | - |
|
226 |
+
| 0.1782 | 3400 | 0.0 | - |
|
227 |
+
| 0.1808 | 3450 | 0.0 | - |
|
228 |
+
| 0.1835 | 3500 | 0.0 | - |
|
229 |
+
| 0.1861 | 3550 | 0.0003 | - |
|
230 |
+
| 0.1887 | 3600 | 0.0131 | - |
|
231 |
+
| 0.1913 | 3650 | 0.0004 | - |
|
232 |
+
| 0.1939 | 3700 | 0.0001 | - |
|
233 |
+
| 0.1966 | 3750 | 0.0 | - |
|
234 |
+
| 0.1992 | 3800 | 0.0001 | - |
|
235 |
+
| 0.2018 | 3850 | 0.0002 | - |
|
236 |
+
| 0.2044 | 3900 | 0.0 | - |
|
237 |
+
| 0.2070 | 3950 | 0.0 | - |
|
238 |
+
| 0.2097 | 4000 | 0.0001 | - |
|
239 |
+
| 0.2123 | 4050 | 0.0015 | - |
|
240 |
+
| 0.2149 | 4100 | 0.0002 | - |
|
241 |
+
| 0.2175 | 4150 | 0.0 | - |
|
242 |
+
| 0.2201 | 4200 | 0.0 | - |
|
243 |
+
| 0.2228 | 4250 | 0.0 | - |
|
244 |
+
| 0.2254 | 4300 | 0.0 | - |
|
245 |
+
| 0.2280 | 4350 | 0.0 | - |
|
246 |
+
| 0.2306 | 4400 | 0.0 | - |
|
247 |
+
| 0.2333 | 4450 | 0.0 | - |
|
248 |
+
| 0.2359 | 4500 | 0.0 | - |
|
249 |
+
| 0.2385 | 4550 | 0.0 | - |
|
250 |
+
| 0.2411 | 4600 | 0.0 | - |
|
251 |
+
| 0.2437 | 4650 | 0.0 | - |
|
252 |
+
| 0.2464 | 4700 | 0.0 | - |
|
253 |
+
| 0.2490 | 4750 | 0.0 | - |
|
254 |
+
| 0.2516 | 4800 | 0.0 | - |
|
255 |
+
| 0.2542 | 4850 | 0.0 | - |
|
256 |
+
| 0.2568 | 4900 | 0.0 | - |
|
257 |
+
| 0.2595 | 4950 | 0.0 | - |
|
258 |
+
| 0.2621 | 5000 | 0.0 | - |
|
259 |
+
| 0.2647 | 5050 | 0.0 | - |
|
260 |
+
| 0.2673 | 5100 | 0.0 | - |
|
261 |
+
| 0.2699 | 5150 | 0.0 | - |
|
262 |
+
| 0.2726 | 5200 | 0.0 | - |
|
263 |
+
| 0.2752 | 5250 | 0.0 | - |
|
264 |
+
| 0.2778 | 5300 | 0.0 | - |
|
265 |
+
| 0.2804 | 5350 | 0.0 | - |
|
266 |
+
| 0.2830 | 5400 | 0.0 | - |
|
267 |
+
| 0.2857 | 5450 | 0.0 | - |
|
268 |
+
| 0.2883 | 5500 | 0.0 | - |
|
269 |
+
| 0.2909 | 5550 | 0.0 | - |
|
270 |
+
| 0.2935 | 5600 | 0.0 | - |
|
271 |
+
| 0.2962 | 5650 | 0.0 | - |
|
272 |
+
| 0.2988 | 5700 | 0.0 | - |
|
273 |
+
| 0.3014 | 5750 | 0.0 | - |
|
274 |
+
| 0.3040 | 5800 | 0.0 | - |
|
275 |
+
| 0.3066 | 5850 | 0.0 | - |
|
276 |
+
| 0.3093 | 5900 | 0.0 | - |
|
277 |
+
| 0.3119 | 5950 | 0.0 | - |
|
278 |
+
| 0.3145 | 6000 | 0.0 | - |
|
279 |
+
| 0.3171 | 6050 | 0.0 | - |
|
280 |
+
| 0.3197 | 6100 | 0.0 | - |
|
281 |
+
| 0.3224 | 6150 | 0.0 | - |
|
282 |
+
| 0.3250 | 6200 | 0.0 | - |
|
283 |
+
| 0.3276 | 6250 | 0.0 | - |
|
284 |
+
| 0.3302 | 6300 | 0.0 | - |
|
285 |
+
| 0.3328 | 6350 | 0.0 | - |
|
286 |
+
| 0.3355 | 6400 | 0.0 | - |
|
287 |
+
| 0.3381 | 6450 | 0.0 | - |
|
288 |
+
| 0.3407 | 6500 | 0.0 | - |
|
289 |
+
| 0.3433 | 6550 | 0.0 | - |
|
290 |
+
| 0.3459 | 6600 | 0.0 | - |
|
291 |
+
| 0.3486 | 6650 | 0.0 | - |
|
292 |
+
| 0.3512 | 6700 | 0.0 | - |
|
293 |
+
| 0.3538 | 6750 | 0.0 | - |
|
294 |
+
| 0.3564 | 6800 | 0.0 | - |
|
295 |
+
| 0.3591 | 6850 | 0.0 | - |
|
296 |
+
| 0.3617 | 6900 | 0.0 | - |
|
297 |
+
| 0.3643 | 6950 | 0.0 | - |
|
298 |
+
| 0.3669 | 7000 | 0.0 | - |
|
299 |
+
| 0.3695 | 7050 | 0.0 | - |
|
300 |
+
| 0.3722 | 7100 | 0.0 | - |
|
301 |
+
| 0.3748 | 7150 | 0.0 | - |
|
302 |
+
| 0.3774 | 7200 | 0.0 | - |
|
303 |
+
| 0.3800 | 7250 | 0.0 | - |
|
304 |
+
| 0.3826 | 7300 | 0.0 | - |
|
305 |
+
| 0.3853 | 7350 | 0.0 | - |
|
306 |
+
| 0.3879 | 7400 | 0.0 | - |
|
307 |
+
| 0.3905 | 7450 | 0.0 | - |
|
308 |
+
| 0.3931 | 7500 | 0.0 | - |
|
309 |
+
| 0.3957 | 7550 | 0.0 | - |
|
310 |
+
| 0.3984 | 7600 | 0.0 | - |
|
311 |
+
| 0.4010 | 7650 | 0.0 | - |
|
312 |
+
| 0.4036 | 7700 | 0.0 | - |
|
313 |
+
| 0.4062 | 7750 | 0.0 | - |
|
314 |
+
| 0.4088 | 7800 | 0.0 | - |
|
315 |
+
| 0.4115 | 7850 | 0.0 | - |
|
316 |
+
| 0.4141 | 7900 | 0.0 | - |
|
317 |
+
| 0.4167 | 7950 | 0.0 | - |
|
318 |
+
| 0.4193 | 8000 | 0.0 | - |
|
319 |
+
| 0.4220 | 8050 | 0.0 | - |
|
320 |
+
| 0.4246 | 8100 | 0.0 | - |
|
321 |
+
| 0.4272 | 8150 | 0.0 | - |
|
322 |
+
| 0.4298 | 8200 | 0.0 | - |
|
323 |
+
| 0.4324 | 8250 | 0.0 | - |
|
324 |
+
| 0.4351 | 8300 | 0.0 | - |
|
325 |
+
| 0.4377 | 8350 | 0.0 | - |
|
326 |
+
| 0.4403 | 8400 | 0.0 | - |
|
327 |
+
| 0.4429 | 8450 | 0.0 | - |
|
328 |
+
| 0.4455 | 8500 | 0.0 | - |
|
329 |
+
| 0.4482 | 8550 | 0.0 | - |
|
330 |
+
| 0.4508 | 8600 | 0.0 | - |
|
331 |
+
| 0.4534 | 8650 | 0.0 | - |
|
332 |
+
| 0.4560 | 8700 | 0.0 | - |
|
333 |
+
| 0.4586 | 8750 | 0.0 | - |
|
334 |
+
| 0.4613 | 8800 | 0.0 | - |
|
335 |
+
| 0.4639 | 8850 | 0.0 | - |
|
336 |
+
| 0.4665 | 8900 | 0.0 | - |
|
337 |
+
| 0.4691 | 8950 | 0.0001 | - |
|
338 |
+
| 0.4717 | 9000 | 0.0 | - |
|
339 |
+
| 0.4744 | 9050 | 0.0 | - |
|
340 |
+
| 0.4770 | 9100 | 0.0 | - |
|
341 |
+
| 0.4796 | 9150 | 0.0 | - |
|
342 |
+
| 0.4822 | 9200 | 0.0 | - |
|
343 |
+
| 0.4849 | 9250 | 0.0 | - |
|
344 |
+
| 0.4875 | 9300 | 0.0 | - |
|
345 |
+
| 0.4901 | 9350 | 0.0 | - |
|
346 |
+
| 0.4927 | 9400 | 0.0 | - |
|
347 |
+
| 0.4953 | 9450 | 0.0 | - |
|
348 |
+
| 0.4980 | 9500 | 0.0 | - |
|
349 |
+
| 0.5006 | 9550 | 0.0 | - |
|
350 |
+
| 0.5032 | 9600 | 0.0 | - |
|
351 |
+
| 0.5058 | 9650 | 0.0 | - |
|
352 |
+
| 0.5084 | 9700 | 0.0 | - |
|
353 |
+
| 0.5111 | 9750 | 0.0 | - |
|
354 |
+
| 0.5137 | 9800 | 0.0 | - |
|
355 |
+
| 0.5163 | 9850 | 0.0 | - |
|
356 |
+
| 0.5189 | 9900 | 0.0 | - |
|
357 |
+
| 0.5215 | 9950 | 0.0 | - |
|
358 |
+
| 0.5242 | 10000 | 0.0 | - |
|
359 |
+
| 0.5268 | 10050 | 0.0 | - |
|
360 |
+
| 0.5294 | 10100 | 0.0 | - |
|
361 |
+
| 0.5320 | 10150 | 0.0 | - |
|
362 |
+
| 0.5346 | 10200 | 0.0 | - |
|
363 |
+
| 0.5373 | 10250 | 0.0 | - |
|
364 |
+
| 0.5399 | 10300 | 0.0 | - |
|
365 |
+
| 0.5425 | 10350 | 0.0 | - |
|
366 |
+
| 0.5451 | 10400 | 0.0 | - |
|
367 |
+
| 0.5478 | 10450 | 0.0 | - |
|
368 |
+
| 0.5504 | 10500 | 0.0 | - |
|
369 |
+
| 0.5530 | 10550 | 0.0 | - |
|
370 |
+
| 0.5556 | 10600 | 0.0 | - |
|
371 |
+
| 0.5582 | 10650 | 0.0 | - |
|
372 |
+
| 0.5609 | 10700 | 0.0 | - |
|
373 |
+
| 0.5635 | 10750 | 0.0 | - |
|
374 |
+
| 0.5661 | 10800 | 0.0 | - |
|
375 |
+
| 0.5687 | 10850 | 0.0 | - |
|
376 |
+
| 0.5713 | 10900 | 0.0 | - |
|
377 |
+
| 0.5740 | 10950 | 0.0 | - |
|
378 |
+
| 0.5766 | 11000 | 0.0 | - |
|
379 |
+
| 0.5792 | 11050 | 0.0 | - |
|
380 |
+
| 0.5818 | 11100 | 0.0 | - |
|
381 |
+
| 0.5844 | 11150 | 0.0 | - |
|
382 |
+
| 0.5871 | 11200 | 0.0 | - |
|
383 |
+
| 0.5897 | 11250 | 0.0 | - |
|
384 |
+
| 0.5923 | 11300 | 0.0 | - |
|
385 |
+
| 0.5949 | 11350 | 0.0 | - |
|
386 |
+
| 0.5975 | 11400 | 0.0 | - |
|
387 |
+
| 0.6002 | 11450 | 0.0 | - |
|
388 |
+
| 0.6028 | 11500 | 0.0 | - |
|
389 |
+
| 0.6054 | 11550 | 0.0 | - |
|
390 |
+
| 0.6080 | 11600 | 0.0 | - |
|
391 |
+
| 0.6107 | 11650 | 0.0 | - |
|
392 |
+
| 0.6133 | 11700 | 0.0 | - |
|
393 |
+
| 0.6159 | 11750 | 0.0 | - |
|
394 |
+
| 0.6185 | 11800 | 0.0 | - |
|
395 |
+
| 0.6211 | 11850 | 0.0 | - |
|
396 |
+
| 0.6238 | 11900 | 0.0 | - |
|
397 |
+
| 0.6264 | 11950 | 0.0 | - |
|
398 |
+
| 0.6290 | 12000 | 0.0 | - |
|
399 |
+
| 0.6316 | 12050 | 0.0 | - |
|
400 |
+
| 0.6342 | 12100 | 0.0 | - |
|
401 |
+
| 0.6369 | 12150 | 0.0 | - |
|
402 |
+
| 0.6395 | 12200 | 0.0 | - |
|
403 |
+
| 0.6421 | 12250 | 0.0 | - |
|
404 |
+
| 0.6447 | 12300 | 0.0 | - |
|
405 |
+
| 0.6473 | 12350 | 0.0 | - |
|
406 |
+
| 0.6500 | 12400 | 0.0 | - |
|
407 |
+
| 0.6526 | 12450 | 0.0 | - |
|
408 |
+
| 0.6552 | 12500 | 0.0 | - |
|
409 |
+
| 0.6578 | 12550 | 0.0 | - |
|
410 |
+
| 0.6604 | 12600 | 0.0 | - |
|
411 |
+
| 0.6631 | 12650 | 0.0 | - |
|
412 |
+
| 0.6657 | 12700 | 0.0 | - |
|
413 |
+
| 0.6683 | 12750 | 0.0 | - |
|
414 |
+
| 0.6709 | 12800 | 0.0 | - |
|
415 |
+
| 0.6736 | 12850 | 0.0 | - |
|
416 |
+
| 0.6762 | 12900 | 0.0 | - |
|
417 |
+
| 0.6788 | 12950 | 0.0 | - |
|
418 |
+
| 0.6814 | 13000 | 0.0 | - |
|
419 |
+
| 0.6840 | 13050 | 0.0 | - |
|
420 |
+
| 0.6867 | 13100 | 0.0 | - |
|
421 |
+
| 0.6893 | 13150 | 0.0 | - |
|
422 |
+
| 0.6919 | 13200 | 0.0 | - |
|
423 |
+
| 0.6945 | 13250 | 0.0 | - |
|
424 |
+
| 0.6971 | 13300 | 0.0 | - |
|
425 |
+
| 0.6998 | 13350 | 0.0 | - |
|
426 |
+
| 0.7024 | 13400 | 0.0 | - |
|
427 |
+
| 0.7050 | 13450 | 0.0 | - |
|
428 |
+
| 0.7076 | 13500 | 0.0 | - |
|
429 |
+
| 0.7102 | 13550 | 0.0 | - |
|
430 |
+
| 0.7129 | 13600 | 0.0 | - |
|
431 |
+
| 0.7155 | 13650 | 0.0 | - |
|
432 |
+
| 0.7181 | 13700 | 0.0 | - |
|
433 |
+
| 0.7207 | 13750 | 0.0 | - |
|
434 |
+
| 0.7233 | 13800 | 0.0 | - |
|
435 |
+
| 0.7260 | 13850 | 0.0 | - |
|
436 |
+
| 0.7286 | 13900 | 0.0 | - |
|
437 |
+
| 0.7312 | 13950 | 0.0 | - |
|
438 |
+
| 0.7338 | 14000 | 0.0 | - |
|
439 |
+
| 0.7365 | 14050 | 0.0 | - |
|
440 |
+
| 0.7391 | 14100 | 0.0 | - |
|
441 |
+
| 0.7417 | 14150 | 0.0 | - |
|
442 |
+
| 0.7443 | 14200 | 0.0 | - |
|
443 |
+
| 0.7469 | 14250 | 0.0 | - |
|
444 |
+
| 0.7496 | 14300 | 0.0 | - |
|
445 |
+
| 0.7522 | 14350 | 0.0 | - |
|
446 |
+
| 0.7548 | 14400 | 0.0 | - |
|
447 |
+
| 0.7574 | 14450 | 0.0 | - |
|
448 |
+
| 0.7600 | 14500 | 0.0 | - |
|
449 |
+
| 0.7627 | 14550 | 0.0 | - |
|
450 |
+
| 0.7653 | 14600 | 0.0 | - |
|
451 |
+
| 0.7679 | 14650 | 0.0 | - |
|
452 |
+
| 0.7705 | 14700 | 0.0 | - |
|
453 |
+
| 0.7731 | 14750 | 0.0 | - |
|
454 |
+
| 0.7758 | 14800 | 0.0 | - |
|
455 |
+
| 0.7784 | 14850 | 0.0 | - |
|
456 |
+
| 0.7810 | 14900 | 0.0 | - |
|
457 |
+
| 0.7836 | 14950 | 0.0 | - |
|
458 |
+
| 0.7862 | 15000 | 0.0 | - |
|
459 |
+
| 0.7889 | 15050 | 0.0 | - |
|
460 |
+
| 0.7915 | 15100 | 0.0 | - |
|
461 |
+
| 0.7941 | 15150 | 0.0 | - |
|
462 |
+
| 0.7967 | 15200 | 0.0 | - |
|
463 |
+
| 0.7994 | 15250 | 0.0 | - |
|
464 |
+
| 0.8020 | 15300 | 0.0 | - |
|
465 |
+
| 0.8046 | 15350 | 0.0 | - |
|
466 |
+
| 0.8072 | 15400 | 0.0 | - |
|
467 |
+
| 0.8098 | 15450 | 0.0 | - |
|
468 |
+
| 0.8125 | 15500 | 0.0 | - |
|
469 |
+
| 0.8151 | 15550 | 0.0 | - |
|
470 |
+
| 0.8177 | 15600 | 0.0 | - |
|
471 |
+
| 0.8203 | 15650 | 0.0 | - |
|
472 |
+
| 0.8229 | 15700 | 0.0 | - |
|
473 |
+
| 0.8256 | 15750 | 0.0 | - |
|
474 |
+
| 0.8282 | 15800 | 0.0 | - |
|
475 |
+
| 0.8308 | 15850 | 0.0 | - |
|
476 |
+
| 0.8334 | 15900 | 0.0 | - |
|
477 |
+
| 0.8360 | 15950 | 0.0 | - |
|
478 |
+
| 0.8387 | 16000 | 0.0 | - |
|
479 |
+
| 0.8413 | 16050 | 0.0 | - |
|
480 |
+
| 0.8439 | 16100 | 0.0 | - |
|
481 |
+
| 0.8465 | 16150 | 0.0 | - |
|
482 |
+
| 0.8491 | 16200 | 0.0 | - |
|
483 |
+
| 0.8518 | 16250 | 0.0 | - |
|
484 |
+
| 0.8544 | 16300 | 0.0 | - |
|
485 |
+
| 0.8570 | 16350 | 0.0 | - |
|
486 |
+
| 0.8596 | 16400 | 0.0 | - |
|
487 |
+
| 0.8622 | 16450 | 0.0 | - |
|
488 |
+
| 0.8649 | 16500 | 0.0 | - |
|
489 |
+
| 0.8675 | 16550 | 0.0 | - |
|
490 |
+
| 0.8701 | 16600 | 0.0 | - |
|
491 |
+
| 0.8727 | 16650 | 0.0 | - |
|
492 |
+
| 0.8754 | 16700 | 0.0 | - |
|
493 |
+
| 0.8780 | 16750 | 0.0 | - |
|
494 |
+
| 0.8806 | 16800 | 0.0 | - |
|
495 |
+
| 0.8832 | 16850 | 0.0 | - |
|
496 |
+
| 0.8858 | 16900 | 0.0 | - |
|
497 |
+
| 0.8885 | 16950 | 0.0 | - |
|
498 |
+
| 0.8911 | 17000 | 0.0 | - |
|
499 |
+
| 0.8937 | 17050 | 0.0 | - |
|
500 |
+
| 0.8963 | 17100 | 0.0 | - |
|
501 |
+
| 0.8989 | 17150 | 0.0 | - |
|
502 |
+
| 0.9016 | 17200 | 0.0 | - |
|
503 |
+
| 0.9042 | 17250 | 0.0 | - |
|
504 |
+
| 0.9068 | 17300 | 0.0 | - |
|
505 |
+
| 0.9094 | 17350 | 0.0 | - |
|
506 |
+
| 0.9120 | 17400 | 0.0 | - |
|
507 |
+
| 0.9147 | 17450 | 0.0 | - |
|
508 |
+
| 0.9173 | 17500 | 0.0 | - |
|
509 |
+
| 0.9199 | 17550 | 0.0 | - |
|
510 |
+
| 0.9225 | 17600 | 0.0 | - |
|
511 |
+
| 0.9251 | 17650 | 0.0 | - |
|
512 |
+
| 0.9278 | 17700 | 0.0 | - |
|
513 |
+
| 0.9304 | 17750 | 0.0 | - |
|
514 |
+
| 0.9330 | 17800 | 0.0 | - |
|
515 |
+
| 0.9356 | 17850 | 0.0 | - |
|
516 |
+
| 0.9383 | 17900 | 0.0 | - |
|
517 |
+
| 0.9409 | 17950 | 0.0 | - |
|
518 |
+
| 0.9435 | 18000 | 0.0 | - |
|
519 |
+
| 0.9461 | 18050 | 0.0 | - |
|
520 |
+
| 0.9487 | 18100 | 0.0 | - |
|
521 |
+
| 0.9514 | 18150 | 0.0 | - |
|
522 |
+
| 0.9540 | 18200 | 0.0 | - |
|
523 |
+
| 0.9566 | 18250 | 0.0 | - |
|
524 |
+
| 0.9592 | 18300 | 0.0 | - |
|
525 |
+
| 0.9618 | 18350 | 0.0 | - |
|
526 |
+
| 0.9645 | 18400 | 0.0 | - |
|
527 |
+
| 0.9671 | 18450 | 0.0 | - |
|
528 |
+
| 0.9697 | 18500 | 0.0 | - |
|
529 |
+
| 0.9723 | 18550 | 0.0 | - |
|
530 |
+
| 0.9749 | 18600 | 0.0 | - |
|
531 |
+
| 0.9776 | 18650 | 0.0 | - |
|
532 |
+
| 0.9802 | 18700 | 0.0 | - |
|
533 |
+
| 0.9828 | 18750 | 0.0 | - |
|
534 |
+
| 0.9854 | 18800 | 0.0 | - |
|
535 |
+
| 0.9880 | 18850 | 0.0 | - |
|
536 |
+
| 0.9907 | 18900 | 0.0 | - |
|
537 |
+
| 0.9933 | 18950 | 0.0 | - |
|
538 |
+
| 0.9959 | 19000 | 0.0 | - |
|
539 |
+
| 0.9985 | 19050 | 0.0 | - |
|
540 |
+
| **1.0** | **19078** | **-** | **0.0437** |
|
541 |
+
| 1.0012 | 19100 | 0.0 | - |
|
542 |
+
| 1.0038 | 19150 | 0.0 | - |
|
543 |
+
| 1.0064 | 19200 | 0.0 | - |
|
544 |
+
| 1.0090 | 19250 | 0.0 | - |
|
545 |
+
| 1.0116 | 19300 | 0.0 | - |
|
546 |
+
| 1.0143 | 19350 | 0.0 | - |
|
547 |
+
| 1.0169 | 19400 | 0.0 | - |
|
548 |
+
| 1.0195 | 19450 | 0.3698 | - |
|
549 |
+
| 1.0221 | 19500 | 0.1546 | - |
|
550 |
+
| 1.0247 | 19550 | 0.0179 | - |
|
551 |
+
| 1.0274 | 19600 | 0.0004 | - |
|
552 |
+
| 1.0300 | 19650 | 0.0005 | - |
|
553 |
+
| 1.0326 | 19700 | 0.0 | - |
|
554 |
+
| 1.0352 | 19750 | 0.0002 | - |
|
555 |
+
| 1.0378 | 19800 | 0.0 | - |
|
556 |
+
| 1.0405 | 19850 | 0.0 | - |
|
557 |
+
| 1.0431 | 19900 | 0.0 | - |
|
558 |
+
| 1.0457 | 19950 | 0.0002 | - |
|
559 |
+
| 1.0483 | 20000 | 0.0011 | - |
|
560 |
+
| 1.0509 | 20050 | 0.0 | - |
|
561 |
+
| 1.0536 | 20100 | 0.0 | - |
|
562 |
+
| 1.0562 | 20150 | 0.0 | - |
|
563 |
+
| 1.0588 | 20200 | 0.0003 | - |
|
564 |
+
| 1.0614 | 20250 | 0.0 | - |
|
565 |
+
| 1.0641 | 20300 | 0.0003 | - |
|
566 |
+
| 1.0667 | 20350 | 0.0003 | - |
|
567 |
+
| 1.0693 | 20400 | 0.0 | - |
|
568 |
+
| 1.0719 | 20450 | 0.0 | - |
|
569 |
+
| 1.0745 | 20500 | 0.0 | - |
|
570 |
+
| 1.0772 | 20550 | 0.0 | - |
|
571 |
+
| 1.0798 | 20600 | 0.0 | - |
|
572 |
+
| 1.0824 | 20650 | 0.0 | - |
|
573 |
+
| 1.0850 | 20700 | 0.0 | - |
|
574 |
+
| 1.0876 | 20750 | 0.0 | - |
|
575 |
+
| 1.0903 | 20800 | 0.0 | - |
|
576 |
+
| 1.0929 | 20850 | 0.0 | - |
|
577 |
+
| 1.0955 | 20900 | 0.0 | - |
|
578 |
+
| 1.0981 | 20950 | 0.0 | - |
|
579 |
+
| 1.1007 | 21000 | 0.0 | - |
|
580 |
+
| 1.1034 | 21050 | 0.0 | - |
|
581 |
+
| 1.1060 | 21100 | 0.0 | - |
|
582 |
+
| 1.1086 | 21150 | 0.0 | - |
|
583 |
+
| 1.1112 | 21200 | 0.0 | - |
|
584 |
+
| 1.1138 | 21250 | 0.0 | - |
|
585 |
+
| 1.1165 | 21300 | 0.0 | - |
|
586 |
+
| 1.1191 | 21350 | 0.0 | - |
|
587 |
+
| 1.1217 | 21400 | 0.0 | - |
|
588 |
+
| 1.1243 | 21450 | 0.0 | - |
|
589 |
+
| 1.1270 | 21500 | 0.0 | - |
|
590 |
+
| 1.1296 | 21550 | 0.0 | - |
|
591 |
+
| 1.1322 | 21600 | 0.0 | - |
|
592 |
+
| 1.1348 | 21650 | 0.0 | - |
|
593 |
+
| 1.1374 | 21700 | 0.0 | - |
|
594 |
+
| 1.1401 | 21750 | 0.0 | - |
|
595 |
+
| 1.1427 | 21800 | 0.0 | - |
|
596 |
+
| 1.1453 | 21850 | 0.0 | - |
|
597 |
+
| 1.1479 | 21900 | 0.0 | - |
|
598 |
+
| 1.1505 | 21950 | 0.0 | - |
|
599 |
+
| 1.1532 | 22000 | 0.0 | - |
|
600 |
+
| 1.1558 | 22050 | 0.0 | - |
|
601 |
+
| 1.1584 | 22100 | 0.0 | - |
|
602 |
+
| 1.1610 | 22150 | 0.0 | - |
|
603 |
+
| 1.1636 | 22200 | 0.0 | - |
|
604 |
+
| 1.1663 | 22250 | 0.0 | - |
|
605 |
+
| 1.1689 | 22300 | 0.0 | - |
|
606 |
+
| 1.1715 | 22350 | 0.0 | - |
|
607 |
+
| 1.1741 | 22400 | 0.0 | - |
|
608 |
+
| 1.1767 | 22450 | 0.0 | - |
|
609 |
+
| 1.1794 | 22500 | 0.0 | - |
|
610 |
+
| 1.1820 | 22550 | 0.0 | - |
|
611 |
+
| 1.1846 | 22600 | 0.0 | - |
|
612 |
+
| 1.1872 | 22650 | 0.0 | - |
|
613 |
+
| 1.1899 | 22700 | 0.0 | - |
|
614 |
+
| 1.1925 | 22750 | 0.0 | - |
|
615 |
+
| 1.1951 | 22800 | 0.0 | - |
|
616 |
+
| 1.1977 | 22850 | 0.0 | - |
|
617 |
+
| 1.2003 | 22900 | 0.0 | - |
|
618 |
+
| 1.2030 | 22950 | 0.0 | - |
|
619 |
+
| 1.2056 | 23000 | 0.0 | - |
|
620 |
+
| 1.2082 | 23050 | 0.0 | - |
|
621 |
+
| 1.2108 | 23100 | 0.0 | - |
|
622 |
+
| 1.2134 | 23150 | 0.0 | - |
|
623 |
+
| 1.2161 | 23200 | 0.0 | - |
|
624 |
+
| 1.2187 | 23250 | 0.0 | - |
|
625 |
+
| 1.2213 | 23300 | 0.0 | - |
|
626 |
+
| 1.2239 | 23350 | 0.0 | - |
|
627 |
+
| 1.2265 | 23400 | 0.0 | - |
|
628 |
+
| 1.2292 | 23450 | 0.0 | - |
|
629 |
+
| 1.2318 | 23500 | 0.0 | - |
|
630 |
+
| 1.2344 | 23550 | 0.0 | - |
|
631 |
+
| 1.2370 | 23600 | 0.0 | - |
|
632 |
+
| 1.2396 | 23650 | 0.0 | - |
|
633 |
+
| 1.2423 | 23700 | 0.0 | - |
|
634 |
+
| 1.2449 | 23750 | 0.0 | - |
|
635 |
+
| 1.2475 | 23800 | 0.0 | - |
|
636 |
+
| 1.2501 | 23850 | 0.0 | - |
|
637 |
+
| 1.2528 | 23900 | 0.0 | - |
|
638 |
+
| 1.2554 | 23950 | 0.0 | - |
|
639 |
+
| 1.2580 | 24000 | 0.0 | - |
|
640 |
+
| 1.2606 | 24050 | 0.0 | - |
|
641 |
+
| 1.2632 | 24100 | 0.0 | - |
|
642 |
+
| 1.2659 | 24150 | 0.0 | - |
|
643 |
+
| 1.2685 | 24200 | 0.0 | - |
|
644 |
+
| 1.2711 | 24250 | 0.0 | - |
|
645 |
+
| 1.2737 | 24300 | 0.0 | - |
|
646 |
+
| 1.2763 | 24350 | 0.0 | - |
|
647 |
+
| 1.2790 | 24400 | 0.0 | - |
|
648 |
+
| 1.2816 | 24450 | 0.0 | - |
|
649 |
+
| 1.2842 | 24500 | 0.0 | - |
|
650 |
+
| 1.2868 | 24550 | 0.0 | - |
|
651 |
+
| 1.2894 | 24600 | 0.0 | - |
|
652 |
+
| 1.2921 | 24650 | 0.0 | - |
|
653 |
+
| 1.2947 | 24700 | 0.0 | - |
|
654 |
+
| 1.2973 | 24750 | 0.0 | - |
|
655 |
+
| 1.2999 | 24800 | 0.0 | - |
|
656 |
+
| 1.3025 | 24850 | 0.0 | - |
|
657 |
+
| 1.3052 | 24900 | 0.0 | - |
|
658 |
+
| 1.3078 | 24950 | 0.0 | - |
|
659 |
+
| 1.3104 | 25000 | 0.0 | - |
|
660 |
+
| 1.3130 | 25050 | 0.0 | - |
|
661 |
+
| 1.3157 | 25100 | 0.0 | - |
|
662 |
+
| 1.3183 | 25150 | 0.0 | - |
|
663 |
+
| 1.3209 | 25200 | 0.0 | - |
|
664 |
+
| 1.3235 | 25250 | 0.0 | - |
|
665 |
+
| 1.3261 | 25300 | 0.0 | - |
|
666 |
+
| 1.3288 | 25350 | 0.0 | - |
|
667 |
+
| 1.3314 | 25400 | 0.0 | - |
|
668 |
+
| 1.3340 | 25450 | 0.0 | - |
|
669 |
+
| 1.3366 | 25500 | 0.0 | - |
|
670 |
+
| 1.3392 | 25550 | 0.0 | - |
|
671 |
+
| 1.3419 | 25600 | 0.0 | - |
|
672 |
+
| 1.3445 | 25650 | 0.0 | - |
|
673 |
+
| 1.3471 | 25700 | 0.0 | - |
|
674 |
+
| 1.3497 | 25750 | 0.0 | - |
|
675 |
+
| 1.3523 | 25800 | 0.0 | - |
|
676 |
+
| 1.3550 | 25850 | 0.0 | - |
|
677 |
+
| 1.3576 | 25900 | 0.0 | - |
|
678 |
+
| 1.3602 | 25950 | 0.0 | - |
|
679 |
+
| 1.3628 | 26000 | 0.0 | - |
|
680 |
+
| 1.3654 | 26050 | 0.0 | - |
|
681 |
+
| 1.3681 | 26100 | 0.0 | - |
|
682 |
+
| 1.3707 | 26150 | 0.0 | - |
|
683 |
+
| 1.3733 | 26200 | 0.0 | - |
|
684 |
+
| 1.3759 | 26250 | 0.0 | - |
|
685 |
+
| 1.3786 | 26300 | 0.0 | - |
|
686 |
+
| 1.3812 | 26350 | 0.0 | - |
|
687 |
+
| 1.3838 | 26400 | 0.0 | - |
|
688 |
+
| 1.3864 | 26450 | 0.0 | - |
|
689 |
+
| 1.3890 | 26500 | 0.0 | - |
|
690 |
+
| 1.3917 | 26550 | 0.0 | - |
|
691 |
+
| 1.3943 | 26600 | 0.0 | - |
|
692 |
+
| 1.3969 | 26650 | 0.0 | - |
|
693 |
+
| 1.3995 | 26700 | 0.0 | - |
|
694 |
+
| 1.4021 | 26750 | 0.0 | - |
|
695 |
+
| 1.4048 | 26800 | 0.0 | - |
|
696 |
+
| 1.4074 | 26850 | 0.0 | - |
|
697 |
+
| 1.4100 | 26900 | 0.0 | - |
|
698 |
+
| 1.4126 | 26950 | 0.0 | - |
|
699 |
+
| 1.4152 | 27000 | 0.0 | - |
|
700 |
+
| 1.4179 | 27050 | 0.0 | - |
|
701 |
+
| 1.4205 | 27100 | 0.0 | - |
|
702 |
+
| 1.4231 | 27150 | 0.0 | - |
|
703 |
+
| 1.4257 | 27200 | 0.0 | - |
|
704 |
+
| 1.4283 | 27250 | 0.0 | - |
|
705 |
+
| 1.4310 | 27300 | 0.0 | - |
|
706 |
+
| 1.4336 | 27350 | 0.0 | - |
|
707 |
+
| 1.4362 | 27400 | 0.0 | - |
|
708 |
+
| 1.4388 | 27450 | 0.0 | - |
|
709 |
+
| 1.4415 | 27500 | 0.0 | - |
|
710 |
+
| 1.4441 | 27550 | 0.0 | - |
|
711 |
+
| 1.4467 | 27600 | 0.0 | - |
|
712 |
+
| 1.4493 | 27650 | 0.0 | - |
|
713 |
+
| 1.4519 | 27700 | 0.0 | - |
|
714 |
+
| 1.4546 | 27750 | 0.0 | - |
|
715 |
+
| 1.4572 | 27800 | 0.0 | - |
|
716 |
+
| 1.4598 | 27850 | 0.0 | - |
|
717 |
+
| 1.4624 | 27900 | 0.0 | - |
|
718 |
+
| 1.4650 | 27950 | 0.0 | - |
|
719 |
+
| 1.4677 | 28000 | 0.0 | - |
|
720 |
+
| 1.4703 | 28050 | 0.0 | - |
|
721 |
+
| 1.4729 | 28100 | 0.0 | - |
|
722 |
+
| 1.4755 | 28150 | 0.0 | - |
|
723 |
+
| 1.4781 | 28200 | 0.0 | - |
|
724 |
+
| 1.4808 | 28250 | 0.0 | - |
|
725 |
+
| 1.4834 | 28300 | 0.0 | - |
|
726 |
+
| 1.4860 | 28350 | 0.0 | - |
|
727 |
+
| 1.4886 | 28400 | 0.0 | - |
|
728 |
+
| 1.4912 | 28450 | 0.0 | - |
|
729 |
+
| 1.4939 | 28500 | 0.0 | - |
|
730 |
+
| 1.4965 | 28550 | 0.0 | - |
|
731 |
+
| 1.4991 | 28600 | 0.0 | - |
|
732 |
+
| 1.5017 | 28650 | 0.0 | - |
|
733 |
+
| 1.5044 | 28700 | 0.0 | - |
|
734 |
+
| 1.5070 | 28750 | 0.0 | - |
|
735 |
+
| 1.5096 | 28800 | 0.0 | - |
|
736 |
+
| 1.5122 | 28850 | 0.0 | - |
|
737 |
+
| 1.5148 | 28900 | 0.0 | - |
|
738 |
+
| 1.5175 | 28950 | 0.0 | - |
|
739 |
+
| 1.5201 | 29000 | 0.0 | - |
|
740 |
+
| 1.5227 | 29050 | 0.0 | - |
|
741 |
+
| 1.5253 | 29100 | 0.0 | - |
|
742 |
+
| 1.5279 | 29150 | 0.0 | - |
|
743 |
+
| 1.5306 | 29200 | 0.0 | - |
|
744 |
+
| 1.5332 | 29250 | 0.0 | - |
|
745 |
+
| 1.5358 | 29300 | 0.0 | - |
|
746 |
+
| 1.5384 | 29350 | 0.0 | - |
|
747 |
+
| 1.5410 | 29400 | 0.0 | - |
|
748 |
+
| 1.5437 | 29450 | 0.0 | - |
|
749 |
+
| 1.5463 | 29500 | 0.0 | - |
|
750 |
+
| 1.5489 | 29550 | 0.0 | - |
|
751 |
+
| 1.5515 | 29600 | 0.0 | - |
|
752 |
+
| 1.5541 | 29650 | 0.0 | - |
|
753 |
+
| 1.5568 | 29700 | 0.0 | - |
|
754 |
+
| 1.5594 | 29750 | 0.0 | - |
|
755 |
+
| 1.5620 | 29800 | 0.0 | - |
|
756 |
+
| 1.5646 | 29850 | 0.0 | - |
|
757 |
+
| 1.5673 | 29900 | 0.0 | - |
|
758 |
+
| 1.5699 | 29950 | 0.0 | - |
|
759 |
+
| 1.5725 | 30000 | 0.0 | - |
|
760 |
+
| 1.5751 | 30050 | 0.0 | - |
|
761 |
+
| 1.5777 | 30100 | 0.0 | - |
|
762 |
+
| 1.5804 | 30150 | 0.0 | - |
|
763 |
+
| 1.5830 | 30200 | 0.0 | - |
|
764 |
+
| 1.5856 | 30250 | 0.0 | - |
|
765 |
+
| 1.5882 | 30300 | 0.0 | - |
|
766 |
+
| 1.5908 | 30350 | 0.0 | - |
|
767 |
+
| 1.5935 | 30400 | 0.0 | - |
|
768 |
+
| 1.5961 | 30450 | 0.0 | - |
|
769 |
+
| 1.5987 | 30500 | 0.0 | - |
|
770 |
+
| 1.6013 | 30550 | 0.0 | - |
|
771 |
+
| 1.6039 | 30600 | 0.0 | - |
|
772 |
+
| 1.6066 | 30650 | 0.0 | - |
|
773 |
+
| 1.6092 | 30700 | 0.0 | - |
|
774 |
+
| 1.6118 | 30750 | 0.0 | - |
|
775 |
+
| 1.6144 | 30800 | 0.0 | - |
|
776 |
+
| 1.6170 | 30850 | 0.0 | - |
|
777 |
+
| 1.6197 | 30900 | 0.0 | - |
|
778 |
+
| 1.6223 | 30950 | 0.0 | - |
|
779 |
+
| 1.6249 | 31000 | 0.0 | - |
|
780 |
+
| 1.6275 | 31050 | 0.0 | - |
|
781 |
+
| 1.6301 | 31100 | 0.0 | - |
|
782 |
+
| 1.6328 | 31150 | 0.0 | - |
|
783 |
+
| 1.6354 | 31200 | 0.0 | - |
|
784 |
+
| 1.6380 | 31250 | 0.0 | - |
|
785 |
+
| 1.6406 | 31300 | 0.0 | - |
|
786 |
+
| 1.6433 | 31350 | 0.0 | - |
|
787 |
+
| 1.6459 | 31400 | 0.0 | - |
|
788 |
+
| 1.6485 | 31450 | 0.0 | - |
|
789 |
+
| 1.6511 | 31500 | 0.0 | - |
|
790 |
+
| 1.6537 | 31550 | 0.0 | - |
|
791 |
+
| 1.6564 | 31600 | 0.0 | - |
|
792 |
+
| 1.6590 | 31650 | 0.0 | - |
|
793 |
+
| 1.6616 | 31700 | 0.0 | - |
|
794 |
+
| 1.6642 | 31750 | 0.0 | - |
|
795 |
+
| 1.6668 | 31800 | 0.0 | - |
|
796 |
+
| 1.6695 | 31850 | 0.0 | - |
|
797 |
+
| 1.6721 | 31900 | 0.0 | - |
|
798 |
+
| 1.6747 | 31950 | 0.0 | - |
|
799 |
+
| 1.6773 | 32000 | 0.0 | - |
|
800 |
+
| 1.6799 | 32050 | 0.0 | - |
|
801 |
+
| 1.6826 | 32100 | 0.0 | - |
|
802 |
+
| 1.6852 | 32150 | 0.0 | - |
|
803 |
+
| 1.6878 | 32200 | 0.0 | - |
|
804 |
+
| 1.6904 | 32250 | 0.0 | - |
|
805 |
+
| 1.6930 | 32300 | 0.0 | - |
|
806 |
+
| 1.6957 | 32350 | 0.0 | - |
|
807 |
+
| 1.6983 | 32400 | 0.0 | - |
|
808 |
+
| 1.7009 | 32450 | 0.0 | - |
|
809 |
+
| 1.7035 | 32500 | 0.0 | - |
|
810 |
+
| 1.7062 | 32550 | 0.0 | - |
|
811 |
+
| 1.7088 | 32600 | 0.0 | - |
|
812 |
+
| 1.7114 | 32650 | 0.0 | - |
|
813 |
+
| 1.7140 | 32700 | 0.0 | - |
|
814 |
+
| 1.7166 | 32750 | 0.0 | - |
|
815 |
+
| 1.7193 | 32800 | 0.0 | - |
|
816 |
+
| 1.7219 | 32850 | 0.0 | - |
|
817 |
+
| 1.7245 | 32900 | 0.0 | - |
|
818 |
+
| 1.7271 | 32950 | 0.0 | - |
|
819 |
+
| 1.7297 | 33000 | 0.0 | - |
|
820 |
+
| 1.7324 | 33050 | 0.0 | - |
|
821 |
+
| 1.7350 | 33100 | 0.0 | - |
|
822 |
+
| 1.7376 | 33150 | 0.0 | - |
|
823 |
+
| 1.7402 | 33200 | 0.0 | - |
|
824 |
+
| 1.7428 | 33250 | 0.0 | - |
|
825 |
+
| 1.7455 | 33300 | 0.0 | - |
|
826 |
+
| 1.7481 | 33350 | 0.0 | - |
|
827 |
+
| 1.7507 | 33400 | 0.0 | - |
|
828 |
+
| 1.7533 | 33450 | 0.0 | - |
|
829 |
+
| 1.7559 | 33500 | 0.0 | - |
|
830 |
+
| 1.7586 | 33550 | 0.0 | - |
|
831 |
+
| 1.7612 | 33600 | 0.0 | - |
|
832 |
+
| 1.7638 | 33650 | 0.0 | - |
|
833 |
+
| 1.7664 | 33700 | 0.0 | - |
|
834 |
+
| 1.7691 | 33750 | 0.0 | - |
|
835 |
+
| 1.7717 | 33800 | 0.0 | - |
|
836 |
+
| 1.7743 | 33850 | 0.0 | - |
|
837 |
+
| 1.7769 | 33900 | 0.0 | - |
|
838 |
+
| 1.7795 | 33950 | 0.0 | - |
|
839 |
+
| 1.7822 | 34000 | 0.0 | - |
|
840 |
+
| 1.7848 | 34050 | 0.0 | - |
|
841 |
+
| 1.7874 | 34100 | 0.0 | - |
|
842 |
+
| 1.7900 | 34150 | 0.0 | - |
|
843 |
+
| 1.7926 | 34200 | 0.0 | - |
|
844 |
+
| 1.7953 | 34250 | 0.0 | - |
|
845 |
+
| 1.7979 | 34300 | 0.0 | - |
|
846 |
+
| 1.8005 | 34350 | 0.0 | - |
|
847 |
+
| 1.8031 | 34400 | 0.0 | - |
|
848 |
+
| 1.8057 | 34450 | 0.0 | - |
|
849 |
+
| 1.8084 | 34500 | 0.0 | - |
|
850 |
+
| 1.8110 | 34550 | 0.0 | - |
|
851 |
+
| 1.8136 | 34600 | 0.0 | - |
|
852 |
+
| 1.8162 | 34650 | 0.0 | - |
|
853 |
+
| 1.8188 | 34700 | 0.0 | - |
|
854 |
+
| 1.8215 | 34750 | 0.0 | - |
|
855 |
+
| 1.8241 | 34800 | 0.0 | - |
|
856 |
+
| 1.8267 | 34850 | 0.0 | - |
|
857 |
+
| 1.8293 | 34900 | 0.0 | - |
|
858 |
+
| 1.8320 | 34950 | 0.0 | - |
|
859 |
+
| 1.8346 | 35000 | 0.0 | - |
|
860 |
+
| 1.8372 | 35050 | 0.0 | - |
|
861 |
+
| 1.8398 | 35100 | 0.0 | - |
|
862 |
+
| 1.8424 | 35150 | 0.0 | - |
|
863 |
+
| 1.8451 | 35200 | 0.0 | - |
|
864 |
+
| 1.8477 | 35250 | 0.0 | - |
|
865 |
+
| 1.8503 | 35300 | 0.0 | - |
|
866 |
+
| 1.8529 | 35350 | 0.0 | - |
|
867 |
+
| 1.8555 | 35400 | 0.0 | - |
|
868 |
+
| 1.8582 | 35450 | 0.0 | - |
|
869 |
+
| 1.8608 | 35500 | 0.0 | - |
|
870 |
+
| 1.8634 | 35550 | 0.0 | - |
|
871 |
+
| 1.8660 | 35600 | 0.0 | - |
|
872 |
+
| 1.8686 | 35650 | 0.0 | - |
|
873 |
+
| 1.8713 | 35700 | 0.0 | - |
|
874 |
+
| 1.8739 | 35750 | 0.0 | - |
|
875 |
+
| 1.8765 | 35800 | 0.0 | - |
|
876 |
+
| 1.8791 | 35850 | 0.0 | - |
|
877 |
+
| 1.8817 | 35900 | 0.0 | - |
|
878 |
+
| 1.8844 | 35950 | 0.0 | - |
|
879 |
+
| 1.8870 | 36000 | 0.0 | - |
|
880 |
+
| 1.8896 | 36050 | 0.0 | - |
|
881 |
+
| 1.8922 | 36100 | 0.0 | - |
|
882 |
+
| 1.8949 | 36150 | 0.0 | - |
|
883 |
+
| 1.8975 | 36200 | 0.0 | - |
|
884 |
+
| 1.9001 | 36250 | 0.0 | - |
|
885 |
+
| 1.9027 | 36300 | 0.0 | - |
|
886 |
+
| 1.9053 | 36350 | 0.0 | - |
|
887 |
+
| 1.9080 | 36400 | 0.0 | - |
|
888 |
+
| 1.9106 | 36450 | 0.0 | - |
|
889 |
+
| 1.9132 | 36500 | 0.0 | - |
|
890 |
+
| 1.9158 | 36550 | 0.0 | - |
|
891 |
+
| 1.9184 | 36600 | 0.0 | - |
|
892 |
+
| 1.9211 | 36650 | 0.0 | - |
|
893 |
+
| 1.9237 | 36700 | 0.0 | - |
|
894 |
+
| 1.9263 | 36750 | 0.0 | - |
|
895 |
+
| 1.9289 | 36800 | 0.0 | - |
|
896 |
+
| 1.9315 | 36850 | 0.0 | - |
|
897 |
+
| 1.9342 | 36900 | 0.0 | - |
|
898 |
+
| 1.9368 | 36950 | 0.0 | - |
|
899 |
+
| 1.9394 | 37000 | 0.0 | - |
|
900 |
+
| 1.9420 | 37050 | 0.0 | - |
|
901 |
+
| 1.9446 | 37100 | 0.0 | - |
|
902 |
+
| 1.9473 | 37150 | 0.0 | - |
|
903 |
+
| 1.9499 | 37200 | 0.0 | - |
|
904 |
+
| 1.9525 | 37250 | 0.0 | - |
|
905 |
+
| 1.9551 | 37300 | 0.0 | - |
|
906 |
+
| 1.9578 | 37350 | 0.0 | - |
|
907 |
+
| 1.9604 | 37400 | 0.0 | - |
|
908 |
+
| 1.9630 | 37450 | 0.0 | - |
|
909 |
+
| 1.9656 | 37500 | 0.0 | - |
|
910 |
+
| 1.9682 | 37550 | 0.0 | - |
|
911 |
+
| 1.9709 | 37600 | 0.0 | - |
|
912 |
+
| 1.9735 | 37650 | 0.0 | - |
|
913 |
+
| 1.9761 | 37700 | 0.0 | - |
|
914 |
+
| 1.9787 | 37750 | 0.0 | - |
|
915 |
+
| 1.9813 | 37800 | 0.0 | - |
|
916 |
+
| 1.9840 | 37850 | 0.0 | - |
|
917 |
+
| 1.9866 | 37900 | 0.0 | - |
|
918 |
+
| 1.9892 | 37950 | 0.0 | - |
|
919 |
+
| 1.9918 | 38000 | 0.0 | - |
|
920 |
+
| 1.9944 | 38050 | 0.0 | - |
|
921 |
+
| 1.9971 | 38100 | 0.0 | - |
|
922 |
+
| 1.9997 | 38150 | 0.0 | - |
|
923 |
+
| 2.0 | 38156 | - | 0.0438 |
|
924 |
+
|
925 |
+
* The bold row denotes the saved checkpoint.
|
926 |
+
### Framework Versions
|
927 |
+
- Python: 3.10.12
|
928 |
+
- SetFit: 1.0.1
|
929 |
+
- Sentence Transformers: 2.2.2
|
930 |
+
- Transformers: 4.36.0
|
931 |
+
- PyTorch: 2.0.0
|
932 |
+
- Datasets: 2.16.1
|
933 |
+
- Tokenizers: 0.15.0
|
934 |
+
|
935 |
+
## Citation
|
936 |
+
|
937 |
+
### BibTeX
|
938 |
+
```bibtex
|
939 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
940 |
+
doi = {10.48550/ARXIV.2209.11055},
|
941 |
+
url = {https://arxiv.org/abs/2209.11055},
|
942 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
943 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
944 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
945 |
+
publisher = {arXiv},
|
946 |
+
year = {2022},
|
947 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
948 |
+
}
|
949 |
+
```
|
950 |
+
|
951 |
+
<!--
|
952 |
+
## Glossary
|
953 |
+
|
954 |
+
*Clearly define terms in order to be accessible across audiences.*
|
955 |
+
-->
|
956 |
+
|
957 |
+
<!--
|
958 |
+
## Model Card Authors
|
959 |
+
|
960 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
961 |
+
-->
|
962 |
+
|
963 |
+
<!--
|
964 |
+
## Model Card Contact
|
965 |
+
|
966 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
967 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_19078/",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.36.0",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470747b22894ead18216ad49b154c444a95cec3df2a0a70146c238fede3deecb
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd691044aa1d707ebcc67a33bf6b922eb70030040c0fba598d8ec28e306364f
|
3 |
+
size 19311
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|