vineet10 commited on
Commit
e8c1077
1 Parent(s): 4a6212a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:26
13
+ - loss:MultipleNegativesRankingLoss
14
+ - loss:MatryoshkaLoss
15
+ widget:
16
+ - source_sentence: The Employee agrees to diligently, honestly, and to the best of
17
+ their abilities, perform all
18
+ sentences:
19
+ - What are the Payment Terms for the Batteries?
20
+ - What are the general obligations of the Employee?
21
+ - according to the MOU?
22
+ - source_sentence: The Company has employed the Employee to render services as described
23
+ herein from the
24
+ sentences:
25
+ - order?
26
+ - When does the Company employ the Employee?
27
+ - What is the Delivery Schedule for the Batteries?
28
+ - source_sentence: The Employee agrees to be employed on the terms and conditions
29
+ set out in this Agreement.
30
+ sentences:
31
+ - What is the term of the Agreement?
32
+ - What are the specific terms and conditions of employment?
33
+ - single order?
34
+ - source_sentence: The Supplier warrants that the Batteries shall be free from defects
35
+ in materials and
36
+ sentences:
37
+ - What is the pricing per Battery under this Agreement?
38
+ - When does the Employee commence employment with the Employer?
39
+ - What warranties are provided by the Supplier for the Batteries?
40
+ - source_sentence: The Employee agrees to abide by the Employer’s rules, regulations,
41
+ guidelines, policies, and
42
+ sentences:
43
+ - Which law governs this Agreement, and where would disputes be resolved?
44
+ - What are the initial job title and duties of the Employee?
45
+ - What rules and policies must the Employee abide by?
46
+ ---
47
+
48
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Output Dimensionality:** 768 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ (2): Normalize()
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("vineet10/new_model")
96
+ # Run inference
97
+ sentences = [
98
+ 'The Employee agrees to abide by the Employer’s rules, regulations, guidelines, policies, and',
99
+ 'What rules and policies must the Employee abide by?',
100
+ 'What are the initial job title and duties of the Employee?',
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 768]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Dataset
151
+
152
+ #### Unnamed Dataset
153
+
154
+
155
+ * Size: 26 training samples
156
+ * Columns: <code>context</code> and <code>question</code>
157
+ * Approximate statistics based on the first 1000 samples:
158
+ | | context | question |
159
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
160
+ | type | string | string |
161
+ | details | <ul><li>min: 2 tokens</li><li>mean: 18.81 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.46 tokens</li><li>max: 18 tokens</li></ul> |
162
+ * Samples:
163
+ | context | question |
164
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|
165
+ | <code>Force majeure events include acts of God, war, terrorism, strikes, labor disputes, natural</code> | <code>What events constitute Force Majeure under this Agreement?</code> |
166
+ | <code>This Agreement commences on April 1, 2023, and terminates on April 1, 2024.</code> | <code>When does this Agreement terminate?</code> |
167
+ | <code></code> | <code>Babbar?</code> |
168
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
169
+ ```json
170
+ {
171
+ "loss": "MultipleNegativesRankingLoss",
172
+ "matryoshka_dims": [
173
+ 768,
174
+ 512,
175
+ 256,
176
+ 128,
177
+ 64
178
+ ],
179
+ "matryoshka_weights": [
180
+ 1,
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1
185
+ ],
186
+ "n_dims_per_step": -1
187
+ }
188
+ ```
189
+
190
+ ### Evaluation Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 3 evaluation samples
196
+ * Columns: <code>question</code>, <code>context</code>, and <code>id</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | question | context | id |
199
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------|
200
+ | type | string | string | int |
201
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.0 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 24.33 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>7: ~33.33%</li><li>15: ~33.33%</li><li>17: ~33.33%</li></ul> |
202
+ * Samples:
203
+ | question | context | id |
204
+ |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:----------------|
205
+ | <code>What financial settlement does Deepak Babbar agree to in the MOU?</code> | <code>Answer: Deepak Babbar agrees to pay Rs 5,10,000 as a full and final settlement to Ayushi</code> | <code>15</code> |
206
+ | <code>What are the duties of the Employee?</code> | <code>The Employee will perform any and all duties as required by the Company that are</code> | <code>7</code> |
207
+ | <code>MOU?</code> | <code>Answer: Deepak Babbar makes the final payment of Rs 2,60,000 at the time of quashing FIR</code> | <code>17</code> |
208
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
209
+ ```json
210
+ {
211
+ "scale": 20.0,
212
+ "similarity_fct": "cos_sim"
213
+ }
214
+ ```
215
+
216
+ ### Training Hyperparameters
217
+ #### Non-Default Hyperparameters
218
+
219
+ - `eval_strategy`: steps
220
+ - `per_device_train_batch_size`: 16
221
+ - `per_device_eval_batch_size`: 16
222
+ - `num_train_epochs`: 1
223
+ - `warmup_ratio`: 0.1
224
+ - `fp16`: True
225
+ - `batch_sampler`: no_duplicates
226
+
227
+ #### All Hyperparameters
228
+ <details><summary>Click to expand</summary>
229
+
230
+ - `overwrite_output_dir`: False
231
+ - `do_predict`: False
232
+ - `eval_strategy`: steps
233
+ - `prediction_loss_only`: True
234
+ - `per_device_train_batch_size`: 16
235
+ - `per_device_eval_batch_size`: 16
236
+ - `per_gpu_train_batch_size`: None
237
+ - `per_gpu_eval_batch_size`: None
238
+ - `gradient_accumulation_steps`: 1
239
+ - `eval_accumulation_steps`: None
240
+ - `learning_rate`: 5e-05
241
+ - `weight_decay`: 0.0
242
+ - `adam_beta1`: 0.9
243
+ - `adam_beta2`: 0.999
244
+ - `adam_epsilon`: 1e-08
245
+ - `max_grad_norm`: 1.0
246
+ - `num_train_epochs`: 1
247
+ - `max_steps`: -1
248
+ - `lr_scheduler_type`: linear
249
+ - `lr_scheduler_kwargs`: {}
250
+ - `warmup_ratio`: 0.1
251
+ - `warmup_steps`: 0
252
+ - `log_level`: passive
253
+ - `log_level_replica`: warning
254
+ - `log_on_each_node`: True
255
+ - `logging_nan_inf_filter`: True
256
+ - `save_safetensors`: True
257
+ - `save_on_each_node`: False
258
+ - `save_only_model`: False
259
+ - `restore_callback_states_from_checkpoint`: False
260
+ - `no_cuda`: False
261
+ - `use_cpu`: False
262
+ - `use_mps_device`: False
263
+ - `seed`: 42
264
+ - `data_seed`: None
265
+ - `jit_mode_eval`: False
266
+ - `use_ipex`: False
267
+ - `bf16`: False
268
+ - `fp16`: True
269
+ - `fp16_opt_level`: O1
270
+ - `half_precision_backend`: auto
271
+ - `bf16_full_eval`: False
272
+ - `fp16_full_eval`: False
273
+ - `tf32`: None
274
+ - `local_rank`: 0
275
+ - `ddp_backend`: None
276
+ - `tpu_num_cores`: None
277
+ - `tpu_metrics_debug`: False
278
+ - `debug`: []
279
+ - `dataloader_drop_last`: False
280
+ - `dataloader_num_workers`: 0
281
+ - `dataloader_prefetch_factor`: None
282
+ - `past_index`: -1
283
+ - `disable_tqdm`: False
284
+ - `remove_unused_columns`: True
285
+ - `label_names`: None
286
+ - `load_best_model_at_end`: False
287
+ - `ignore_data_skip`: False
288
+ - `fsdp`: []
289
+ - `fsdp_min_num_params`: 0
290
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
291
+ - `fsdp_transformer_layer_cls_to_wrap`: None
292
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
293
+ - `deepspeed`: None
294
+ - `label_smoothing_factor`: 0.0
295
+ - `optim`: adamw_torch
296
+ - `optim_args`: None
297
+ - `adafactor`: False
298
+ - `group_by_length`: False
299
+ - `length_column_name`: length
300
+ - `ddp_find_unused_parameters`: None
301
+ - `ddp_bucket_cap_mb`: None
302
+ - `ddp_broadcast_buffers`: False
303
+ - `dataloader_pin_memory`: True
304
+ - `dataloader_persistent_workers`: False
305
+ - `skip_memory_metrics`: True
306
+ - `use_legacy_prediction_loop`: False
307
+ - `push_to_hub`: False
308
+ - `resume_from_checkpoint`: None
309
+ - `hub_model_id`: None
310
+ - `hub_strategy`: every_save
311
+ - `hub_private_repo`: False
312
+ - `hub_always_push`: False
313
+ - `gradient_checkpointing`: False
314
+ - `gradient_checkpointing_kwargs`: None
315
+ - `include_inputs_for_metrics`: False
316
+ - `eval_do_concat_batches`: True
317
+ - `fp16_backend`: auto
318
+ - `push_to_hub_model_id`: None
319
+ - `push_to_hub_organization`: None
320
+ - `mp_parameters`:
321
+ - `auto_find_batch_size`: False
322
+ - `full_determinism`: False
323
+ - `torchdynamo`: None
324
+ - `ray_scope`: last
325
+ - `ddp_timeout`: 1800
326
+ - `torch_compile`: False
327
+ - `torch_compile_backend`: None
328
+ - `torch_compile_mode`: None
329
+ - `dispatch_batches`: None
330
+ - `split_batches`: None
331
+ - `include_tokens_per_second`: False
332
+ - `include_num_input_tokens_seen`: False
333
+ - `neftune_noise_alpha`: None
334
+ - `optim_target_modules`: None
335
+ - `batch_eval_metrics`: False
336
+ - `eval_on_start`: False
337
+ - `batch_sampler`: no_duplicates
338
+ - `multi_dataset_batch_sampler`: proportional
339
+
340
+ </details>
341
+
342
+ ### Framework Versions
343
+ - Python: 3.10.12
344
+ - Sentence Transformers: 3.0.1
345
+ - Transformers: 4.42.4
346
+ - PyTorch: 2.3.1+cu121
347
+ - Accelerate: 0.32.1
348
+ - Datasets: 2.20.0
349
+ - Tokenizers: 0.19.1
350
+
351
+ ## Citation
352
+
353
+ ### BibTeX
354
+
355
+ #### Sentence Transformers
356
+ ```bibtex
357
+ @inproceedings{reimers-2019-sentence-bert,
358
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
359
+ author = "Reimers, Nils and Gurevych, Iryna",
360
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
361
+ month = "11",
362
+ year = "2019",
363
+ publisher = "Association for Computational Linguistics",
364
+ url = "https://arxiv.org/abs/1908.10084",
365
+ }
366
+ ```
367
+
368
+ #### MatryoshkaLoss
369
+ ```bibtex
370
+ @misc{kusupati2024matryoshka,
371
+ title={Matryoshka Representation Learning},
372
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
373
+ year={2024},
374
+ eprint={2205.13147},
375
+ archivePrefix={arXiv},
376
+ primaryClass={cs.LG}
377
+ }
378
+ ```
379
+
380
+ #### MultipleNegativesRankingLoss
381
+ ```bibtex
382
+ @misc{henderson2017efficient,
383
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
384
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
385
+ year={2017},
386
+ eprint={1705.00652},
387
+ archivePrefix={arXiv},
388
+ primaryClass={cs.CL}
389
+ }
390
+ ```
391
+
392
+ <!--
393
+ ## Glossary
394
+
395
+ *Clearly define terms in order to be accessible across audiences.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Authors
400
+
401
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
402
+ -->
403
+
404
+ <!--
405
+ ## Model Card Contact
406
+
407
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
408
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4db737f56aaea90796b5a8d219de0eee958295a575c611f6b417ad340151da
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff