vincha77 commited on
Commit
d45999f
1 Parent(s): 2d45e59

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What are the potential risks associated with the impersonation
46
+ and cyber-attacks mentioned in the context?
47
+ sentences:
48
+ - "Technology Engagement Center \nUber Technologies \nUniversity of Pittsburgh \n\
49
+ Undergraduate Student \nCollaborative \nUpturn \nUS Technology Policy Committee\
50
+ \ \nof the Association of Computing \nMachinery \nVirginia Puccio \nVisar Berisha\
51
+ \ and Julie Liss \nXR Association \nXR Safety Initiative \n• As an additional\
52
+ \ effort to reach out to stakeholders regarding the RFI, OSTP conducted two listening\
53
+ \ sessions\nfor members of the public. The listening sessions together drew upwards\
54
+ \ of 300 participants. The Science and\nTechnology Policy Institute produced a\
55
+ \ synopsis of both the RFI submissions and the feedback at the listening\nsessions.115\n\
56
+ 61"
57
+ - "across all subgroups, which could leave the groups facing underperformance with\
58
+ \ worse outcomes than \nif no GAI system were used. Disparate or reduced performance\
59
+ \ for lower-resource languages also \npresents challenges to model adoption, inclusion,\
60
+ \ and accessibility, and may make preservation of \nendangered languages more\
61
+ \ difficult if GAI systems become embedded in everyday processes that would \notherwise\
62
+ \ have been opportunities to use these languages. \nBias is mutually reinforcing\
63
+ \ with the problem of undesired homogenization, in which GAI systems \nproduce\
64
+ \ skewed distributions of outputs that are overly uniform (for example, repetitive\
65
+ \ aesthetic styles"
66
+ - "impersonation, cyber-attacks, and weapons creation. \nCBRN Information or Capabilities;\
67
+ \ \nInformation Security \nMS-2.6-007 Regularly evaluate GAI system vulnerabilities\
68
+ \ to possible circumvention of safety \nmeasures. \nCBRN Information or Capabilities;\
69
+ \ \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
70
+ \ Domain Experts, Operation and Monitoring, TEVV"
71
+ - source_sentence: What techniques are suggested to assess and manage statistical
72
+ biases related to GAI content provenance?
73
+ sentences:
74
+ - "2 \nThis work was informed by public feedback and consultations with diverse\
75
+ \ stakeholder groups as part of NIST’s \nGenerative AI Public Working Group (GAI\
76
+ \ PWG). The GAI PWG was an open, transparent, and collaborative \nprocess, facilitated\
77
+ \ via a virtual workspace, to obtain multistakeholder input on GAI risk management\
78
+ \ and to \ninform NIST’s approach. \nThe focus of the GAI PWG was limited to four\
79
+ \ primary considerations relevant to GAI: Governance, Content \nProvenance, Pre-deployment\
80
+ \ Testing, and Incident Disclosure (further described in Appendix A). As such,\
81
+ \ the \nsuggested actions in this document primarily address these considerations.\
82
+ \ \nFuture revisions of this profile will include additional AI RMF subcategories,\
83
+ \ risks, and suggested actions based \non additional considerations of GAI as\
84
+ \ the space evolves and empirical evidence indicates additional risks. A \nglossary\
85
+ \ of terms pertinent to GAI risk management will be developed and hosted on NIST’s\
86
+ \ Trustworthy &"
87
+ - "30 \nMEASURE 2.2: Evaluations involving human subjects meet applicable requirements\
88
+ \ (including human subject protection) and are \nrepresentative of the relevant\
89
+ \ population. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.2-001 Assess and\
90
+ \ manage statistical biases related to GAI content provenance through \ntechniques\
91
+ \ such as re-sampling, re-weighting, or adversarial training. \nInformation Integrity;\
92
+ \ Information \nSecurity; Harmful Bias and \nHomogenization \nMS-2.2-002 \nDocument\
93
+ \ how content provenance data is tracked and how that data interacts \nwith privacy\
94
+ \ and security. Consider: Anonymizing data to protect the privacy of \nhuman subjects;\
95
+ \ Leveraging privacy output filters; Removing any personally \nidentifiable information\
96
+ \ (PII) to prevent potential harm or misuse. \nData Privacy; Human AI \nConfiguration;\
97
+ \ Information \nIntegrity; Information Security; \nDangerous, Violent, or Hateful\
98
+ \ \nContent \nMS-2.2-003 Provide human subjects with options to withdraw participation\
99
+ \ or revoke their"
100
+ - "humans (e.g., intelligence tests, professional licensing exams) does not guarantee\
101
+ \ GAI system validity or \nreliability in those domains. Similarly, jailbreaking\
102
+ \ or prompt engineering tests may not systematically \nassess validity or reliability\
103
+ \ risks. \nMeasurement gaps can arise from mismatches between laboratory and\
104
+ \ real-world settings. Current \ntesting approaches often remain focused on laboratory\
105
+ \ conditions or restricted to benchmark test \ndatasets and in silico techniques\
106
+ \ that may not extrapolate well to—or directly assess GAI impacts in real-\nworld\
107
+ \ conditions. For example, current measurement gaps for GAI make it difficult to\
108
+ \ precisely estimate \nits potential ecosystem-level or longitudinal risks and\
109
+ \ related political, social, and economic impacts. \nGaps between benchmarks and\
110
+ \ real-world use of GAI systems may likely be exacerbated due to prompt \nsensitivity\
111
+ \ and broad heterogeneity of contexts of use. \nA.1.5. Structured Public Feedback"
112
+ - source_sentence: How does the absence of an explanation regarding data usage affect
113
+ parents' ability to contest decisions made in child maltreatment assessments?
114
+ sentences:
115
+ - '62. See, e.g., Federal Trade Commission. Data Brokers: A Call for Transparency
116
+ and Accountability. May
117
+
118
+ 2014.
119
+
120
+ https://www.ftc.gov/system/files/documents/reports/data-brokers-call-transparency-accountability­
121
+
122
+ report-federal-trade-commission-may-2014/140527databrokerreport.pdf; Cathy O’Neil.
123
+
124
+ Weapons of Math Destruction. Penguin Books. 2017.
125
+
126
+ https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction
127
+
128
+ 63. See, e.g., Rachel Levinson-Waldman, Harsha Pandurnga, and Faiza Patel. Social
129
+ Media Surveillance by
130
+
131
+ the U.S. Government. Brennan Center for Justice. Jan. 7, 2022.
132
+
133
+ https://www.brennancenter.org/our-work/research-reports/social-media-surveillance-us-government;
134
+
135
+ Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future
136
+ at the New Frontier of
137
+
138
+ Power. Public Affairs. 2019.
139
+
140
+ 64. Angela Chen. Why the Future of Life Insurance May Depend on Your Online Presence.
141
+ The Verge. Feb.
142
+
143
+ 7, 2019.'
144
+ - "NOTICE & \nEXPLANATION \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section provides\
145
+ \ a brief summary of the problems which the principle seeks to address and protect\
146
+ \ \nagainst, including illustrative examples. \nAutomated systems now determine\
147
+ \ opportunities, from employment to credit, and directly shape the American \n\
148
+ public’s experiences, from the courtroom to online classrooms, in ways that profoundly\
149
+ \ impact people’s lives. But this \nexpansive impact is not always visible. An\
150
+ \ applicant might not know whether a person rejected their resume or a \nhiring\
151
+ \ algorithm moved them to the bottom of the list. A defendant in the courtroom\
152
+ \ might not know if a judge deny­\ning their bail is informed by an automated\
153
+ \ system that labeled them “high risk.” From correcting errors to contesting \n\
154
+ decisions, people are often denied the knowledge they need to address the impact\
155
+ \ of automated systems on their lives."
156
+ - 'ever being notified that data was being collected and used as part of an algorithmic
157
+ child maltreatment
158
+
159
+ risk assessment.84 The lack of notice or an explanation makes it harder for those
160
+ performing child
161
+
162
+ maltreatment assessments to validate the risk assessment and denies parents knowledge
163
+ that could help them
164
+
165
+ contest a decision.
166
+
167
+ 41'
168
+ - source_sentence: How should automated systems be tested to ensure they are free
169
+ from algorithmic discrimination?
170
+ sentences:
171
+ - "Homogenization? arXiv. https://arxiv.org/pdf/2211.13972 \nBoyarskaya, M. et al.\
172
+ \ (2020) Overcoming Failures of Imagination in AI Infused System Development and\
173
+ \ \nDeployment. arXiv. https://arxiv.org/pdf/2011.13416 \nBrowne, D. et al. (2023)\
174
+ \ Securing the AI Pipeline. Mandiant. \nhttps://www.mandiant.com/resources/blog/securing-ai-pipeline\
175
+ \ \nBurgess, M. (2024) Generative AI’s Biggest Security Flaw Is Not Easy to Fix.\
176
+ \ WIRED. \nhttps://www.wired.com/story/generative-ai-prompt-injection-hacking/\
177
+ \ \nBurtell, M. et al. (2024) The Surprising Power of Next Word Prediction: Large\
178
+ \ Language Models \nExplained, Part 1. Georgetown Center for Security and Emerging\
179
+ \ Technology. \nhttps://cset.georgetown.edu/article/the-surprising-power-of-next-word-prediction-large-language-\n\
180
+ models-explained-part-1/ \nCanadian Centre for Cyber Security (2023) Generative\
181
+ \ artificial intelligence (AI) - ITSAP.00.041. \nhttps://www.cyber.gc.ca/en/guidance/generative-artificial-intelligence-ai-itsap00041"
182
+ - "relevant biological and chemical threat knowledge and information is often publicly\
183
+ \ accessible, LLMs \ncould facilitate its analysis or synthesis, particularly\
184
+ \ by individuals without formal scientific training or \nexpertise. \nRecent research\
185
+ \ on this topic found that LLM outputs regarding biological threat creation and\
186
+ \ attack \nplanning provided minimal assistance beyond traditional search engine\
187
+ \ queries, suggesting that state-of-\nthe-art LLMs at the time these studies were\
188
+ \ conducted do not substantially increase the operational \nlikelihood of such\
189
+ \ an attack. The physical synthesis development, production, and use of chemical\
190
+ \ or \nbiological agents will continue to require both applicable expertise and\
191
+ \ supporting materials and \ninfrastructure. The impact of GAI on chemical or\
192
+ \ biological agent misuse will depend on what the key \nbarriers for malicious\
193
+ \ actors are (e.g., whether information access is one such barrier), and how well\
194
+ \ GAI \ncan help actors address those barriers."
195
+ - "WHAT SHOULD BE EXPECTED OF AUTOMATED SYSTEMS\nThe expectations for automated\
196
+ \ systems are meant to serve as a blueprint for the development of additional\
197
+ \ \ntechnical standards and practices that are tailored for particular sectors\
198
+ \ and contexts. \nAny automated system should be tested to help ensure it is free\
199
+ \ from algorithmic discrimination before it can be \nsold or used. Protection\
200
+ \ against algorithmic discrimination should include designing to ensure equity,\
201
+ \ broadly \nconstrued. Some algorithmic discrimination is already prohibited\
202
+ \ under existing anti-discrimination law. The \nexpectations set out below describe\
203
+ \ proactive technical and policy steps that can be taken to not only \nreinforce\
204
+ \ those legal protections but extend beyond them to ensure equity for underserved\
205
+ \ communities48 \neven in circumstances where a specific legal protection may\
206
+ \ not be clearly established. These protections"
207
+ - source_sentence: What rights do applicants have if their application for credit
208
+ is denied according to the CFPB?
209
+ sentences:
210
+ - "listed organizations and individuals:\nAccenture \nAccess Now \nACT | The App\
211
+ \ Association \nAHIP \nAIethicist.org \nAirlines for America \nAlliance for Automotive\
212
+ \ Innovation \nAmelia Winger-Bearskin \nAmerican Civil Liberties Union \nAmerican\
213
+ \ Civil Liberties Union of \nMassachusetts \nAmerican Medical Association \nARTICLE19\
214
+ \ \nAttorneys General of the District of \nColumbia, Illinois, Maryland, \nMichigan,\
215
+ \ Minnesota, New York, \nNorth Carolina, Oregon, Vermont, \nand Washington \n\
216
+ Avanade \nAware \nBarbara Evans \nBetter Identity Coalition \nBipartisan Policy\
217
+ \ Center \nBrandon L. Garrett and Cynthia \nRudin \nBrian Krupp \nBrooklyn Defender\
218
+ \ Services \nBSA | The Software Alliance \nCarnegie Mellon University \nCenter\
219
+ \ for Democracy & \nTechnology \nCenter for New Democratic \nProcesses \nCenter\
220
+ \ for Research and Education \non Accessible Technology and \nExperiences at University\
221
+ \ of \nWashington, Devva Kasnitz, L Jean \nCamp, Jonathan Lazar, Harry \nHochheiser\
222
+ \ \nCenter on Privacy & Technology at \nGeorgetown Law \nCisco Systems"
223
+ - "even if the inferences are not accurate (e.g., confabulations), and especially\
224
+ \ if they reveal information \nthat the individual considers sensitive or that\
225
+ \ is used to disadvantage or harm them. \nBeyond harms from information exposure\
226
+ \ (such as extortion or dignitary harm), wrong or inappropriate \ninferences of\
227
+ \ PII can contribute to downstream or secondary harmful impacts. For example,\
228
+ \ predictive \ninferences made by GAI models based on PII or protected attributes\
229
+ \ can contribute to adverse decisions, \nleading to representational or allocative\
230
+ \ harms to individuals or groups (see Harmful Bias and \nHomogenization below)."
231
+ - "information in their credit report.\" The CFPB has also asserted that \"[t]he\
232
+ \ law gives every applicant the right to \na specific explanation if their application\
233
+ \ for credit was denied, and that right is not diminished simply because \na company\
234
+ \ uses a complex algorithm that it doesn't understand.\"92 Such explanations illustrate\
235
+ \ a shared value \nthat certain decisions need to be explained. \nA California\
236
+ \ law requires that warehouse employees are provided with notice and explana-\n\
237
+ tion about quotas, potentially facilitated by automated systems, that apply to\
238
+ \ them. Warehous-\ning employers in California that use quota systems (often facilitated\
239
+ \ by algorithmic monitoring systems) are \nrequired to provide employees with\
240
+ \ a written description of each quota that applies to the employee, including\
241
+ \ \n“quantified number of tasks to be performed or materials to be produced or\
242
+ \ handled, within the defined"
243
+ model-index:
244
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
245
+ results:
246
+ - task:
247
+ type: information-retrieval
248
+ name: Information Retrieval
249
+ dataset:
250
+ name: Unknown
251
+ type: unknown
252
+ metrics:
253
+ - type: cosine_accuracy@1
254
+ value: 0.98
255
+ name: Cosine Accuracy@1
256
+ - type: cosine_accuracy@3
257
+ value: 1.0
258
+ name: Cosine Accuracy@3
259
+ - type: cosine_accuracy@5
260
+ value: 1.0
261
+ name: Cosine Accuracy@5
262
+ - type: cosine_accuracy@10
263
+ value: 1.0
264
+ name: Cosine Accuracy@10
265
+ - type: cosine_precision@1
266
+ value: 0.98
267
+ name: Cosine Precision@1
268
+ - type: cosine_precision@3
269
+ value: 0.3333333333333334
270
+ name: Cosine Precision@3
271
+ - type: cosine_precision@5
272
+ value: 0.19999999999999996
273
+ name: Cosine Precision@5
274
+ - type: cosine_precision@10
275
+ value: 0.09999999999999998
276
+ name: Cosine Precision@10
277
+ - type: cosine_recall@1
278
+ value: 0.98
279
+ name: Cosine Recall@1
280
+ - type: cosine_recall@3
281
+ value: 1.0
282
+ name: Cosine Recall@3
283
+ - type: cosine_recall@5
284
+ value: 1.0
285
+ name: Cosine Recall@5
286
+ - type: cosine_recall@10
287
+ value: 1.0
288
+ name: Cosine Recall@10
289
+ - type: cosine_ndcg@10
290
+ value: 0.9913092975357145
291
+ name: Cosine Ndcg@10
292
+ - type: cosine_mrr@10
293
+ value: 0.9883333333333333
294
+ name: Cosine Mrr@10
295
+ - type: cosine_map@100
296
+ value: 0.9883333333333334
297
+ name: Cosine Map@100
298
+ - type: dot_accuracy@1
299
+ value: 0.98
300
+ name: Dot Accuracy@1
301
+ - type: dot_accuracy@3
302
+ value: 1.0
303
+ name: Dot Accuracy@3
304
+ - type: dot_accuracy@5
305
+ value: 1.0
306
+ name: Dot Accuracy@5
307
+ - type: dot_accuracy@10
308
+ value: 1.0
309
+ name: Dot Accuracy@10
310
+ - type: dot_precision@1
311
+ value: 0.98
312
+ name: Dot Precision@1
313
+ - type: dot_precision@3
314
+ value: 0.3333333333333334
315
+ name: Dot Precision@3
316
+ - type: dot_precision@5
317
+ value: 0.19999999999999996
318
+ name: Dot Precision@5
319
+ - type: dot_precision@10
320
+ value: 0.09999999999999998
321
+ name: Dot Precision@10
322
+ - type: dot_recall@1
323
+ value: 0.98
324
+ name: Dot Recall@1
325
+ - type: dot_recall@3
326
+ value: 1.0
327
+ name: Dot Recall@3
328
+ - type: dot_recall@5
329
+ value: 1.0
330
+ name: Dot Recall@5
331
+ - type: dot_recall@10
332
+ value: 1.0
333
+ name: Dot Recall@10
334
+ - type: dot_ndcg@10
335
+ value: 0.9913092975357145
336
+ name: Dot Ndcg@10
337
+ - type: dot_mrr@10
338
+ value: 0.9883333333333333
339
+ name: Dot Mrr@10
340
+ - type: dot_map@100
341
+ value: 0.9883333333333334
342
+ name: Dot Map@100
343
+ ---
344
+
345
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
346
+
347
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
348
+
349
+ ## Model Details
350
+
351
+ ### Model Description
352
+ - **Model Type:** Sentence Transformer
353
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
354
+ - **Maximum Sequence Length:** 512 tokens
355
+ - **Output Dimensionality:** 768 tokens
356
+ - **Similarity Function:** Cosine Similarity
357
+ <!-- - **Training Dataset:** Unknown -->
358
+ <!-- - **Language:** Unknown -->
359
+ <!-- - **License:** Unknown -->
360
+
361
+ ### Model Sources
362
+
363
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
364
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
365
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
366
+
367
+ ### Full Model Architecture
368
+
369
+ ```
370
+ SentenceTransformer(
371
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
372
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
373
+ (2): Normalize()
374
+ )
375
+ ```
376
+
377
+ ## Usage
378
+
379
+ ### Direct Usage (Sentence Transformers)
380
+
381
+ First install the Sentence Transformers library:
382
+
383
+ ```bash
384
+ pip install -U sentence-transformers
385
+ ```
386
+
387
+ Then you can load this model and run inference.
388
+ ```python
389
+ from sentence_transformers import SentenceTransformer
390
+
391
+ # Download from the 🤗 Hub
392
+ model = SentenceTransformer("vincha77/finetuned_arctic")
393
+ # Run inference
394
+ sentences = [
395
+ 'What rights do applicants have if their application for credit is denied according to the CFPB?',
396
+ 'information in their credit report." The CFPB has also asserted that "[t]he law gives every applicant the right to \na specific explanation if their application for credit was denied, and that right is not diminished simply because \na company uses a complex algorithm that it doesn\'t understand."92 Such explanations illustrate a shared value \nthat certain decisions need to be explained. \nA California law requires that warehouse employees are provided with notice and explana-\ntion about quotas, potentially facilitated by automated systems, that apply to them. Warehous-\ning employers in California that use quota systems (often facilitated by algorithmic monitoring systems) are \nrequired to provide employees with a written description of each quota that applies to the employee, including \n“quantified number of tasks to be performed or materials to be produced or handled, within the defined',
397
+ 'even if the inferences are not accurate (e.g., confabulations), and especially if they reveal information \nthat the individual considers sensitive or that is used to disadvantage or harm them. \nBeyond harms from information exposure (such as extortion or dignitary harm), wrong or inappropriate \ninferences of PII can contribute to downstream or secondary harmful impacts. For example, predictive \ninferences made by GAI models based on PII or protected attributes can contribute to adverse decisions, \nleading to representational or allocative harms to individuals or groups (see Harmful Bias and \nHomogenization below).',
398
+ ]
399
+ embeddings = model.encode(sentences)
400
+ print(embeddings.shape)
401
+ # [3, 768]
402
+
403
+ # Get the similarity scores for the embeddings
404
+ similarities = model.similarity(embeddings, embeddings)
405
+ print(similarities.shape)
406
+ # [3, 3]
407
+ ```
408
+
409
+ <!--
410
+ ### Direct Usage (Transformers)
411
+
412
+ <details><summary>Click to see the direct usage in Transformers</summary>
413
+
414
+ </details>
415
+ -->
416
+
417
+ <!--
418
+ ### Downstream Usage (Sentence Transformers)
419
+
420
+ You can finetune this model on your own dataset.
421
+
422
+ <details><summary>Click to expand</summary>
423
+
424
+ </details>
425
+ -->
426
+
427
+ <!--
428
+ ### Out-of-Scope Use
429
+
430
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
431
+ -->
432
+
433
+ ## Evaluation
434
+
435
+ ### Metrics
436
+
437
+ #### Information Retrieval
438
+
439
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
440
+
441
+ | Metric | Value |
442
+ |:--------------------|:-----------|
443
+ | cosine_accuracy@1 | 0.98 |
444
+ | cosine_accuracy@3 | 1.0 |
445
+ | cosine_accuracy@5 | 1.0 |
446
+ | cosine_accuracy@10 | 1.0 |
447
+ | cosine_precision@1 | 0.98 |
448
+ | cosine_precision@3 | 0.3333 |
449
+ | cosine_precision@5 | 0.2 |
450
+ | cosine_precision@10 | 0.1 |
451
+ | cosine_recall@1 | 0.98 |
452
+ | cosine_recall@3 | 1.0 |
453
+ | cosine_recall@5 | 1.0 |
454
+ | cosine_recall@10 | 1.0 |
455
+ | cosine_ndcg@10 | 0.9913 |
456
+ | cosine_mrr@10 | 0.9883 |
457
+ | **cosine_map@100** | **0.9883** |
458
+ | dot_accuracy@1 | 0.98 |
459
+ | dot_accuracy@3 | 1.0 |
460
+ | dot_accuracy@5 | 1.0 |
461
+ | dot_accuracy@10 | 1.0 |
462
+ | dot_precision@1 | 0.98 |
463
+ | dot_precision@3 | 0.3333 |
464
+ | dot_precision@5 | 0.2 |
465
+ | dot_precision@10 | 0.1 |
466
+ | dot_recall@1 | 0.98 |
467
+ | dot_recall@3 | 1.0 |
468
+ | dot_recall@5 | 1.0 |
469
+ | dot_recall@10 | 1.0 |
470
+ | dot_ndcg@10 | 0.9913 |
471
+ | dot_mrr@10 | 0.9883 |
472
+ | dot_map@100 | 0.9883 |
473
+
474
+ <!--
475
+ ## Bias, Risks and Limitations
476
+
477
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
478
+ -->
479
+
480
+ <!--
481
+ ### Recommendations
482
+
483
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
484
+ -->
485
+
486
+ ## Training Details
487
+
488
+ ### Training Dataset
489
+
490
+ #### Unnamed Dataset
491
+
492
+
493
+ * Size: 600 training samples
494
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
495
+ * Approximate statistics based on the first 600 samples:
496
+ | | sentence_0 | sentence_1 |
497
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
498
+ | type | string | string |
499
+ | details | <ul><li>min: 12 tokens</li><li>mean: 21.21 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 182.02 tokens</li><li>max: 512 tokens</li></ul> |
500
+ * Samples:
501
+ | sentence_0 | sentence_1 |
502
+ |:-------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
503
+ | <code>What are the responsibilities of AI Actors in monitoring reported issues related to GAI system performance?</code> | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
504
+ | <code>How are measurable activities for continual improvements integrated into AI system updates according to the context provided?</code> | <code>45 <br>MG-4.1-007 <br>Verify that AI Actors responsible for monitoring reported issues can effectively <br>evaluate GAI system performance including the application of content <br>provenance data tracking techniques, and promptly escalate issues for response. <br>Human-AI Configuration; <br>Information Integrity <br>AI Actor Tasks: AI Deployment, Affected Individuals and Communities, Domain Experts, End-Users, Human Factors, Operation and <br>Monitoring <br> <br>MANAGE 4.2: Measurable activities for continual improvements are integrated into AI system updates and include regular <br>engagement with interested parties, including relevant AI Actors. <br>Action ID <br>Suggested Action <br>GAI Risks <br>MG-4.2-001 Conduct regular monitoring of GAI systems and publish reports detailing the <br>performance, feedback received, and improvements made. <br>Harmful Bias and Homogenization <br>MG-4.2-002 <br>Practice and follow incident response plans for addressing the generation of</code> |
505
+ | <code>What is the main function of the app discussed in Samantha Cole's article from June 26, 2019?</code> | <code>them<br>10. Samantha Cole. This Horrifying App Undresses a Photo of Any Woman With a Single Click. Motherboard.<br>June 26, 2019. https://www.vice.com/en/article/kzm59x/deepnude-app-creates-fake-nudes-of-any-woman<br>11. Lauren Kaori Gurley. Amazon’s AI Cameras Are Punishing Drivers for Mistakes They Didn’t Make.<br>Motherboard. Sep. 20, 2021. https://www.vice.com/en/article/88npjv/amazons-ai-cameras-are-punishing­<br>drivers-for-mistakes-they-didnt-make<br>63</code> |
506
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
507
+ ```json
508
+ {
509
+ "loss": "MultipleNegativesRankingLoss",
510
+ "matryoshka_dims": [
511
+ 768,
512
+ 512,
513
+ 256,
514
+ 128,
515
+ 64
516
+ ],
517
+ "matryoshka_weights": [
518
+ 1,
519
+ 1,
520
+ 1,
521
+ 1,
522
+ 1
523
+ ],
524
+ "n_dims_per_step": -1
525
+ }
526
+ ```
527
+
528
+ ### Training Hyperparameters
529
+ #### Non-Default Hyperparameters
530
+
531
+ - `eval_strategy`: steps
532
+ - `per_device_train_batch_size`: 16
533
+ - `per_device_eval_batch_size`: 16
534
+ - `num_train_epochs`: 5
535
+ - `multi_dataset_batch_sampler`: round_robin
536
+
537
+ #### All Hyperparameters
538
+ <details><summary>Click to expand</summary>
539
+
540
+ - `overwrite_output_dir`: False
541
+ - `do_predict`: False
542
+ - `eval_strategy`: steps
543
+ - `prediction_loss_only`: True
544
+ - `per_device_train_batch_size`: 16
545
+ - `per_device_eval_batch_size`: 16
546
+ - `per_gpu_train_batch_size`: None
547
+ - `per_gpu_eval_batch_size`: None
548
+ - `gradient_accumulation_steps`: 1
549
+ - `eval_accumulation_steps`: None
550
+ - `torch_empty_cache_steps`: None
551
+ - `learning_rate`: 5e-05
552
+ - `weight_decay`: 0.0
553
+ - `adam_beta1`: 0.9
554
+ - `adam_beta2`: 0.999
555
+ - `adam_epsilon`: 1e-08
556
+ - `max_grad_norm`: 1
557
+ - `num_train_epochs`: 5
558
+ - `max_steps`: -1
559
+ - `lr_scheduler_type`: linear
560
+ - `lr_scheduler_kwargs`: {}
561
+ - `warmup_ratio`: 0.0
562
+ - `warmup_steps`: 0
563
+ - `log_level`: passive
564
+ - `log_level_replica`: warning
565
+ - `log_on_each_node`: True
566
+ - `logging_nan_inf_filter`: True
567
+ - `save_safetensors`: True
568
+ - `save_on_each_node`: False
569
+ - `save_only_model`: False
570
+ - `restore_callback_states_from_checkpoint`: False
571
+ - `no_cuda`: False
572
+ - `use_cpu`: False
573
+ - `use_mps_device`: False
574
+ - `seed`: 42
575
+ - `data_seed`: None
576
+ - `jit_mode_eval`: False
577
+ - `use_ipex`: False
578
+ - `bf16`: False
579
+ - `fp16`: False
580
+ - `fp16_opt_level`: O1
581
+ - `half_precision_backend`: auto
582
+ - `bf16_full_eval`: False
583
+ - `fp16_full_eval`: False
584
+ - `tf32`: None
585
+ - `local_rank`: 0
586
+ - `ddp_backend`: None
587
+ - `tpu_num_cores`: None
588
+ - `tpu_metrics_debug`: False
589
+ - `debug`: []
590
+ - `dataloader_drop_last`: False
591
+ - `dataloader_num_workers`: 0
592
+ - `dataloader_prefetch_factor`: None
593
+ - `past_index`: -1
594
+ - `disable_tqdm`: False
595
+ - `remove_unused_columns`: True
596
+ - `label_names`: None
597
+ - `load_best_model_at_end`: False
598
+ - `ignore_data_skip`: False
599
+ - `fsdp`: []
600
+ - `fsdp_min_num_params`: 0
601
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
602
+ - `fsdp_transformer_layer_cls_to_wrap`: None
603
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
604
+ - `deepspeed`: None
605
+ - `label_smoothing_factor`: 0.0
606
+ - `optim`: adamw_torch
607
+ - `optim_args`: None
608
+ - `adafactor`: False
609
+ - `group_by_length`: False
610
+ - `length_column_name`: length
611
+ - `ddp_find_unused_parameters`: None
612
+ - `ddp_bucket_cap_mb`: None
613
+ - `ddp_broadcast_buffers`: False
614
+ - `dataloader_pin_memory`: True
615
+ - `dataloader_persistent_workers`: False
616
+ - `skip_memory_metrics`: True
617
+ - `use_legacy_prediction_loop`: False
618
+ - `push_to_hub`: False
619
+ - `resume_from_checkpoint`: None
620
+ - `hub_model_id`: None
621
+ - `hub_strategy`: every_save
622
+ - `hub_private_repo`: False
623
+ - `hub_always_push`: False
624
+ - `gradient_checkpointing`: False
625
+ - `gradient_checkpointing_kwargs`: None
626
+ - `include_inputs_for_metrics`: False
627
+ - `eval_do_concat_batches`: True
628
+ - `fp16_backend`: auto
629
+ - `push_to_hub_model_id`: None
630
+ - `push_to_hub_organization`: None
631
+ - `mp_parameters`:
632
+ - `auto_find_batch_size`: False
633
+ - `full_determinism`: False
634
+ - `torchdynamo`: None
635
+ - `ray_scope`: last
636
+ - `ddp_timeout`: 1800
637
+ - `torch_compile`: False
638
+ - `torch_compile_backend`: None
639
+ - `torch_compile_mode`: None
640
+ - `dispatch_batches`: None
641
+ - `split_batches`: None
642
+ - `include_tokens_per_second`: False
643
+ - `include_num_input_tokens_seen`: False
644
+ - `neftune_noise_alpha`: None
645
+ - `optim_target_modules`: None
646
+ - `batch_eval_metrics`: False
647
+ - `eval_on_start`: False
648
+ - `eval_use_gather_object`: False
649
+ - `batch_sampler`: batch_sampler
650
+ - `multi_dataset_batch_sampler`: round_robin
651
+
652
+ </details>
653
+
654
+ ### Training Logs
655
+ | Epoch | Step | cosine_map@100 |
656
+ |:------:|:----:|:--------------:|
657
+ | 1.0 | 38 | 0.965 |
658
+ | 1.3158 | 50 | 0.9783 |
659
+ | 2.0 | 76 | 0.9767 |
660
+ | 2.6316 | 100 | 0.9833 |
661
+ | 3.0 | 114 | 0.9883 |
662
+
663
+
664
+ ### Framework Versions
665
+ - Python: 3.10.12
666
+ - Sentence Transformers: 3.1.1
667
+ - Transformers: 4.44.2
668
+ - PyTorch: 2.4.1+cu121
669
+ - Accelerate: 0.34.2
670
+ - Datasets: 3.0.0
671
+ - Tokenizers: 0.19.1
672
+
673
+ ## Citation
674
+
675
+ ### BibTeX
676
+
677
+ #### Sentence Transformers
678
+ ```bibtex
679
+ @inproceedings{reimers-2019-sentence-bert,
680
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
681
+ author = "Reimers, Nils and Gurevych, Iryna",
682
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
683
+ month = "11",
684
+ year = "2019",
685
+ publisher = "Association for Computational Linguistics",
686
+ url = "https://arxiv.org/abs/1908.10084",
687
+ }
688
+ ```
689
+
690
+ #### MatryoshkaLoss
691
+ ```bibtex
692
+ @misc{kusupati2024matryoshka,
693
+ title={Matryoshka Representation Learning},
694
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
695
+ year={2024},
696
+ eprint={2205.13147},
697
+ archivePrefix={arXiv},
698
+ primaryClass={cs.LG}
699
+ }
700
+ ```
701
+
702
+ #### MultipleNegativesRankingLoss
703
+ ```bibtex
704
+ @misc{henderson2017efficient,
705
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
706
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
707
+ year={2017},
708
+ eprint={1705.00652},
709
+ archivePrefix={arXiv},
710
+ primaryClass={cs.CL}
711
+ }
712
+ ```
713
+
714
+ <!--
715
+ ## Glossary
716
+
717
+ *Clearly define terms in order to be accessible across audiences.*
718
+ -->
719
+
720
+ <!--
721
+ ## Model Card Authors
722
+
723
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
724
+ -->
725
+
726
+ <!--
727
+ ## Model Card Contact
728
+
729
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
730
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_arctic",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813afc8d1a06662d3e56c23aff1c9b92e84c715ed9091a85f665fffb4d553e92
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff