vinayak361
commited on
Commit
·
855727c
1
Parent(s):
87d7494
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: token_fine_tunned_flipkart_2_gl6
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# token_fine_tunned_flipkart_2_gl6
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [vinayak361/token_fine_tunned_flipkart_2_gl](https://huggingface.co/vinayak361/token_fine_tunned_flipkart_2_gl) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7363
|
23 |
+
- Precision: 0.7243
|
24 |
+
- Recall: 0.7752
|
25 |
+
- F1: 0.7489
|
26 |
+
- Accuracy: 0.7558
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-06
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 120 | 1.0057 | 0.6623 | 0.7212 | 0.6905 | 0.6995 |
|
58 |
+
| No log | 2.0 | 240 | 0.8581 | 0.6660 | 0.7290 | 0.6961 | 0.7080 |
|
59 |
+
| No log | 3.0 | 360 | 0.8085 | 0.6882 | 0.7518 | 0.7186 | 0.7302 |
|
60 |
+
| No log | 4.0 | 480 | 0.7890 | 0.6970 | 0.7575 | 0.7260 | 0.7332 |
|
61 |
+
| 0.92 | 5.0 | 600 | 0.7716 | 0.7036 | 0.7596 | 0.7305 | 0.7372 |
|
62 |
+
| 0.92 | 6.0 | 720 | 0.7573 | 0.7028 | 0.7603 | 0.7304 | 0.7397 |
|
63 |
+
| 0.92 | 7.0 | 840 | 0.7510 | 0.7135 | 0.7653 | 0.7385 | 0.7462 |
|
64 |
+
| 0.92 | 8.0 | 960 | 0.7509 | 0.7192 | 0.7688 | 0.7432 | 0.7472 |
|
65 |
+
| 0.7004 | 9.0 | 1080 | 0.7409 | 0.7181 | 0.7717 | 0.7439 | 0.7472 |
|
66 |
+
| 0.7004 | 10.0 | 1200 | 0.7428 | 0.7155 | 0.7710 | 0.7422 | 0.7492 |
|
67 |
+
| 0.7004 | 11.0 | 1320 | 0.7414 | 0.7223 | 0.7752 | 0.7479 | 0.7523 |
|
68 |
+
| 0.7004 | 12.0 | 1440 | 0.7426 | 0.7207 | 0.7710 | 0.7450 | 0.7492 |
|
69 |
+
| 0.6265 | 13.0 | 1560 | 0.7368 | 0.7255 | 0.7745 | 0.7492 | 0.7553 |
|
70 |
+
| 0.6265 | 14.0 | 1680 | 0.7388 | 0.7239 | 0.7738 | 0.7480 | 0.7538 |
|
71 |
+
| 0.6265 | 15.0 | 1800 | 0.7338 | 0.7239 | 0.7738 | 0.7480 | 0.7538 |
|
72 |
+
| 0.6265 | 16.0 | 1920 | 0.7368 | 0.7243 | 0.7752 | 0.7489 | 0.7548 |
|
73 |
+
| 0.5879 | 17.0 | 2040 | 0.7371 | 0.7270 | 0.7767 | 0.7510 | 0.7568 |
|
74 |
+
| 0.5879 | 18.0 | 2160 | 0.7371 | 0.7243 | 0.7752 | 0.7489 | 0.7558 |
|
75 |
+
| 0.5879 | 19.0 | 2280 | 0.7356 | 0.7247 | 0.7752 | 0.7491 | 0.7553 |
|
76 |
+
| 0.5879 | 20.0 | 2400 | 0.7363 | 0.7243 | 0.7752 | 0.7489 | 0.7558 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.19.2
|
82 |
+
- Pytorch 1.11.0+cu102
|
83 |
+
- Datasets 2.2.2
|
84 |
+
- Tokenizers 0.12.1
|