vijayrag commited on
Commit
a560a58
1 Parent(s): 9b9ca43

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -16,14 +16,16 @@ model-index:
16
  dataset:
17
  name: emotion
18
  type: emotion
 
 
19
  args: default
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.9275
24
  - name: F1
25
  type: f1
26
- value: 0.9273204837245832
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,9 +35,9 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.2178
37
- - Accuracy: 0.9275
38
- - F1: 0.9273
39
 
40
  ## Model description
41
 
@@ -66,13 +68,13 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
- | 0.8381 | 1.0 | 250 | 0.3130 | 0.9075 | 0.9054 |
70
- | 0.2443 | 2.0 | 500 | 0.2178 | 0.9275 | 0.9273 |
71
 
72
 
73
  ### Framework versions
74
 
75
- - Transformers 4.13.0
76
- - Pytorch 1.12.0+cu113
77
- - Datasets 1.16.1
78
- - Tokenizers 0.10.3
 
16
  dataset:
17
  name: emotion
18
  type: emotion
19
+ config: default
20
+ split: train
21
  args: default
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.923
26
  - name: F1
27
  type: f1
28
+ value: 0.9226309564543956
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 0.2256
39
+ - Accuracy: 0.923
40
+ - F1: 0.9226
41
 
42
  ## Model description
43
 
 
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
+ | 0.807 | 1.0 | 250 | 0.3202 | 0.8995 | 0.8968 |
72
+ | 0.2491 | 2.0 | 500 | 0.2256 | 0.923 | 0.9226 |
73
 
74
 
75
  ### Framework versions
76
 
77
+ - Transformers 4.23.1
78
+ - Pytorch 1.12.1+cu113
79
+ - Datasets 2.6.1
80
+ - Tokenizers 0.13.1