ColPali
Safetensors
English
vidore_no_match
manu commited on
Commit
5612e75
1 Parent(s): c62bfc8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -170
README.md CHANGED
@@ -1,202 +1,140 @@
1
  ---
2
  base_model: vidore/colpaligemma-3b-mix-448-base
3
- library_name: peft
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.11.1
 
1
  ---
2
  base_model: vidore/colpaligemma-3b-mix-448-base
3
+ license: mit
4
+ library_name: colpali
5
+ language:
6
+ - en
7
+ tags:
8
+ - vidore
9
  ---
10
+ # ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
11
 
12
+ ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
13
+ It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
14
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
15
 
16
+ This version has right padding to fix unwanted tokens in the query encoding + hard negative mining.
17
 
18
+ ## Model Description
19
 
20
+ This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
21
+ We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
22
 
23
+ One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
24
+ This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
25
 
26
+ ## Model Training
27
 
28
+ ### Dataset
29
+ Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
30
+ Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
31
+ A validation set is created with 2% of the samples to tune hyperparameters.
32
 
33
+ *Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
34
 
35
+ ### Parameters
36
 
37
+ All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
38
+ with `alpha=32` and `r=32` on the transformer layers from the language model,
39
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
40
+ We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
 
 
 
41
 
42
+ ## Usage
43
 
44
+ ```python
45
+ import torch
46
+ import typer
47
+ from torch.utils.data import DataLoader
48
+ from tqdm import tqdm
49
+ from transformers import AutoProcessor
50
+ from PIL import Image
51
 
52
+ from colpali_engine.models.paligemma_colbert_architecture import ColPali
53
+ from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
54
+ from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
55
+ from colpali_engine.utils.image_from_page_utils import load_from_dataset
56
 
 
57
 
58
+ def main() -> None:
59
+ """Example script to run inference with ColPali"""
60
 
61
+ # Load model
62
+ model_name = "vidore/colpali"
63
+ model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
64
+ model.load_adapter(model_name)
65
+ processor = AutoProcessor.from_pretrained(model_name)
66
 
67
+ # select images -> load_from_pdf(<pdf_path>), load_from_image_urls(["<url_1>"]), load_from_dataset(<path>)
68
+ images = load_from_dataset("vidore/docvqa_test_subsampled")
69
+ queries = ["From which university does James V. Fiorca come ?", "Who is the japanese prime minister?"]
70
 
71
+ # run inference - docs
72
+ dataloader = DataLoader(
73
+ images,
74
+ batch_size=4,
75
+ shuffle=False,
76
+ collate_fn=lambda x: process_images(processor, x),
77
+ )
78
+ ds = []
79
+ for batch_doc in tqdm(dataloader):
80
+ with torch.no_grad():
81
+ batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
82
+ embeddings_doc = model(**batch_doc)
83
+ ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
84
 
85
+ # run inference - queries
86
+ dataloader = DataLoader(
87
+ queries,
88
+ batch_size=4,
89
+ shuffle=False,
90
+ collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
91
+ )
92
 
93
+ qs = []
94
+ for batch_query in dataloader:
95
+ with torch.no_grad():
96
+ batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
97
+ embeddings_query = model(**batch_query)
98
+ qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
99
 
100
+ # run evaluation
101
+ retriever_evaluator = CustomEvaluator(is_multi_vector=True)
102
+ scores = retriever_evaluator.evaluate(qs, ds)
103
+ print(scores.argmax(axis=1))
104
 
 
105
 
106
+ if __name__ == "__main__":
107
+ typer.run(main)
108
 
109
+ ```
110
 
111
+ ## Limitations
112
 
113
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
114
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
115
 
116
+ ## License
117
 
118
+ ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
119
 
120
+ ## Contact
121
+
122
+ - Manuel Faysse: manuel.faysse@illuin.tech
123
+ - Hugues Sibille: [email protected]
124
+ - Tony Wu: [email protected]
125
+
126
+ ## Citation
127
+
128
+ If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
129
+
130
+ ```bibtex
131
+ @misc{faysse2024colpaliefficientdocumentretrieval,
132
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
133
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
134
+ year={2024},
135
+ eprint={2407.01449},
136
+ archivePrefix={arXiv},
137
+ primaryClass={cs.IR},
138
+ url={https://arxiv.org/abs/2407.01449},
139
+ }
140
+ ```