victorivus
commited on
Commit
·
0031d8c
1
Parent(s):
a4bf878
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 277.96 +/- 20.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c158e69d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c158e6a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c158e6af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c158e6b80>", "_build": "<function ActorCriticPolicy._build at 0x7f7c158e6c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c158e6ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c158e6d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c158e6dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c158e6e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c158e6ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c158e6f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c158ea040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7c158e80f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675797483275425299, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr1AjxI37C6abiftWJ2zLBf5kS6Oz6kNAAAgD8AAIA/mmK6PZO8ZT9IA6s87a6avtlG5j04+Cm9AAAAAAAAAACmT6G9KYEdvMbCvzwnL7W6ERRSPa7NKj4AAIA/AACAP1pvlr32jD26Am2buZrnJjPsPUc7yji1OAAAgD8AAIA/YBUWvuMeBT8m5R4+go2OvjgxHL0n/5q9AAAAAAAAAACAAfa9RlOpPtMH5j3zn4K+b8LYPI2qL70AAAAAAAAAAJrN7jt7tNC4roI8uSBUB7Q87JC7+mZeOAAAgD8AAIA/MyvavMOpNLoNAvq1hDTzsMM4FLqZNiQ1AACAPwAAgD+amXA79txrurRlR7tWBMa2xrtdu1P4MDYAAIA/AACAP8DFnD5DDUc/s9TtvTfjsb7tmE4+K512vgAAAAAAAAAAzQAbPUiX1Lrabmi7cA2VPLr53bteAoE9AACAPwAAgD86rwi+XHt1uujZjDhCfoazBzcJujHxobcAAIA/AACAP3Pw0L3DMRy6ZQJguiJ4VDWe1pE5zVqAOQAAgD8AAAAAC3CWvkkvPD8BGQE+kjfSvg8XyL2Ecr89AAAAAAAAAACa1WE8XCcAujqZjrlR/u20u+mAO78oqDgAAIA/AACAPwAVRD24BuW5YE9jusRLyLTO/rI6NZ2DOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR+UmaumuZ0CUhpRSlIwBbJRN6AOMAXSUR0CTib/vv0AcdX2UKGgGaAloD0MI1lOrr67GZECUhpRSlGgVTegDaBZHQJOLvZsbedl1fZQoaAZoCWgPQwib49wm3J1gQJSGlFKUaBVN6ANoFkdAk41NAcDKYHV9lChoBmgJaA9DCGmKAKd3ymJAlIaUUpRoFU3oA2gWR0CTkN2hIvrXdX2UKGgGaAloD0MIYrt7gG61YUCUhpRSlGgVTegDaBZHQJORRSzgMtt1fZQoaAZoCWgPQwj3yycrBn5nQJSGlFKUaBVN6ANoFkdAk5U9jgAIY3V9lChoBmgJaA9DCI7nM6BeMmhAlIaUUpRoFU3oA2gWR0CTmMQP7N0OdX2UKGgGaAloD0MI9BjlmRcLYECUhpRSlGgVTegDaBZHQJObNf+jua51fZQoaAZoCWgPQwj19ueioVFiQJSGlFKUaBVN6ANoFkdAk52gk5ZKWnV9lChoBmgJaA9DCPMeZ5qwDG9AlIaUUpRoFU2HAWgWR0CTnxyXlbNbdX2UKGgGaAloD0MI7upVZHQeZkCUhpRSlGgVTegDaBZHQJOiRZowmE51fZQoaAZoCWgPQwhgrG9gcodgQJSGlFKUaBVN6ANoFkdAk6jrFS88LnV9lChoBmgJaA9DCEF+NnLdO2VAlIaUUpRoFU3oA2gWR0CTq4MJQcghdX2UKGgGaAloD0MIieyDLAslX0CUhpRSlGgVTegDaBZHQJOvCnEVFhJ1fZQoaAZoCWgPQwiPGaiMfx1lQJSGlFKUaBVN6ANoFkdAk8dyBf8dgnV9lChoBmgJaA9DCAdcV8xIEXBAlIaUUpRoFU2vAmgWR0CTych4MWoFdX2UKGgGaAloD0MIqyUd5WDrW0CUhpRSlGgVTegDaBZHQJPKZ/Tb3491fZQoaAZoCWgPQwgnTu53KPFnQJSGlFKUaBVN6ANoFkdAk85pbpu/DnV9lChoBmgJaA9DCCLDKt4Ii3BAlIaUUpRoFU0kA2gWR0CT0HOtnwocdX2UKGgGaAloD0MIcXK/Q5F/ckCUhpRSlGgVTeoBaBZHQJPSc1VHWjJ1fZQoaAZoCWgPQwgAyXTo9KpKQJSGlFKUaBVLy2gWR0CT0w8yN4qxdX2UKGgGaAloD0MIa4MT0S8AYkCUhpRSlGgVTegDaBZHQJPV61twaR91fZQoaAZoCWgPQwgOaOkKtnZhQJSGlFKUaBVN6ANoFkdAk9bp71Iy03V9lChoBmgJaA9DCGk1JO4xXGZAlIaUUpRoFU3oA2gWR0CT3Jon8baRdX2UKGgGaAloD0MI0ZZzKa76aECUhpRSlGgVTegDaBZHQJPhApvxYq51fZQoaAZoCWgPQwjpCyHnfRZkQJSGlFKUaBVN6ANoFkdAk+QFQhwEQ3V9lChoBmgJaA9DCLhbkgP2a2VAlIaUUpRoFU3oA2gWR0CT5tZAprk9dX2UKGgGaAloD0MILo1feKUgYkCUhpRSlGgVTegDaBZHQJPohW6shgV1fZQoaAZoCWgPQwgC8bp+AVBxQJSGlFKUaBVNmgJoFkdAk+yQ8W9DhXV9lChoBmgJaA9DCA+XHHdKj2VAlIaUUpRoFU3oA2gWR0CT81SLqD9PdX2UKGgGaAloD0MI/WzkuikKZUCUhpRSlGgVTegDaBZHQJP2QFqzqr11fZQoaAZoCWgPQwjM8J9uIDNlQJSGlFKUaBVN6ANoFkdAk/u3/T9bYHV9lChoBmgJaA9DCFnBb0MMrmdAlIaUUpRoFU3oA2gWR0CUF+h3aBZqdX2UKGgGaAloD0MIrOKNzCOXQECUhpRSlGgVS85oFkdAlBhYbbUPQXV9lChoBmgJaA9DCNKsbB/yhmJAlIaUUpRoFU3oA2gWR0CUG6Mm4RVZdX2UKGgGaAloD0MIvAZ96e2CYkCUhpRSlGgVTegDaBZHQJQd3LQokRl1fZQoaAZoCWgPQwi371F/vfxjQJSGlFKUaBVN6ANoFkdAlCAsFY+0PnV9lChoBmgJaA9DCM7drpemZGVAlIaUUpRoFU3oA2gWR0CUIOMb3oLYdX2UKGgGaAloD0MI8aFES57EYUCUhpRSlGgVTegDaBZHQJQkHuSfUWl1fZQoaAZoCWgPQwgOu+8YHrNnQJSGlFKUaBVN6ANoFkdAlCUthNM4+HV9lChoBmgJaA9DCAWKWMTwoHFAlIaUUpRoFU2TAWgWR0CUJSz5oGpudX2UKGgGaAloD0MIyyvX22bXUkCUhpRSlGgVS69oFkdAlClQ7PppvnV9lChoBmgJaA9DCPAxWHEqmmVAlIaUUpRoFU3oA2gWR0CUKurf+CK8dX2UKGgGaAloD0MIwXEZN7UFZECUhpRSlGgVTegDaBZHQJQvDvJA+px1fZQoaAZoCWgPQwgwndZt0HlgQJSGlFKUaBVN6ANoFkdAlDIGXsw+MnV9lChoBmgJaA9DCLb0aKqnNXBAlIaUUpRoFU2zA2gWR0CUNHpkwvg4dX2UKGgGaAloD0MIdeeJ52znZECUhpRSlGgVTegDaBZHQJQ167VawEB1fZQoaAZoCWgPQwhB8WPMXcFRQJSGlFKUaBVLw2gWR0CUNkG5+YtydX2UKGgGaAloD0MI/P84YcLDZECUhpRSlGgVTegDaBZHQJQ9e/i5uqF1fZQoaAZoCWgPQwiAt0CCohJyQJSGlFKUaBVNRANoFkdAlEgROYYzi3V9lChoBmgJaA9DCNRjWwYcq2VAlIaUUpRoFU3oA2gWR0CUTNlI3BHkdX2UKGgGaAloD0MIzVg0nd1WcUCUhpRSlGgVTWsBaBZHQJRNXb8FY+11fZQoaAZoCWgPQwjNj7+0qDRiQJSGlFKUaBVN6ANoFkdAlGTKbe/HpHV9lChoBmgJaA9DCJKwbycRTGVAlIaUUpRoFU3oA2gWR0CUZ+CUHIIXdX2UKGgGaAloD0MIxt/2BInTYECUhpRSlGgVTegDaBZHQJRp7PjXFtN1fZQoaAZoCWgPQwheLAyRU8lkQJSGlFKUaBVN6ANoFkdAlGwR5ooNNXV9lChoBmgJaA9DCIZVvJH5zHBAlIaUUpRoFU0yAWgWR0CUcItAs053dX2UKGgGaAloD0MIjxg9t1BfZUCUhpRSlGgVTegDaBZHQJRw3naFmFt1fZQoaAZoCWgPQwjjUSrhCcFnQJSGlFKUaBVN6ANoFkdAlHIaV+qioXV9lChoBmgJaA9DCMfYCS/BvWFAlIaUUpRoFU3oA2gWR0CUchwIdELIdX2UKGgGaAloD0MIqWdBKO9YcECUhpRSlGgVTesCaBZHQJRySBczImx1fZQoaAZoCWgPQwj1LAjlfa5nQJSGlFKUaBVN6ANoFkdAlHbWVzIV/XV9lChoBmgJaA9DCMpS6/3GxG9AlIaUUpRoFU0mA2gWR0CUeGVtoBaLdX2UKGgGaAloD0MIYRvxZDcVQ0CUhpRSlGgVS8VoFkdAlHv8JIDoyXV9lChoBmgJaA9DCNJVurtOwGNAlIaUUpRoFU3oA2gWR0CUfaCT2WY4dX2UKGgGaAloD0MISnuDL4w2cUCUhpRSlGgVTR4DaBZHQJR+uURnOB11fZQoaAZoCWgPQwg5mbhVkB9iQJSGlFKUaBVN6ANoFkdAlII1Vo6CDnV9lChoBmgJaA9DCG3/ykpTSHBAlIaUUpRoFU1bAWgWR0CUhSLamGdqdX2UKGgGaAloD0MIbhRZa6j9bUCUhpRSlGgVTegBaBZHQJSHQfvF3px1fZQoaAZoCWgPQwjDRlm/mcZuQJSGlFKUaBVNmwJoFkdAlIjHYQJ5V3V9lChoBmgJaA9DCA00n3M3fXJAlIaUUpRoFU0cA2gWR0CUi10m+j/NdX2UKGgGaAloD0MI0GG+vADEZECUhpRSlGgVTegDaBZHQJSQ8CeVcD91fZQoaAZoCWgPQwixFMlXAixvQJSGlFKUaBVNtgFoFkdAlJj7R8c+7nV9lChoBmgJaA9DCDPgLCVLGG5AlIaUUpRoFU2DAWgWR0CUsfpEhJRPdX2UKGgGaAloD0MIYYxIFNrAcUCUhpRSlGgVTXABaBZHQJSy3vx6OYJ1fZQoaAZoCWgPQwhPHhZqTcNwQJSGlFKUaBVN1ANoFkdAlLNN9x6v7nV9lChoBmgJaA9DCOgRo+eWrXFAlIaUUpRoFU3PAWgWR0CUtHUbT+efdX2UKGgGaAloD0MIX10VqMUCZ0CUhpRSlGgVTegDaBZHQJS3einHead1fZQoaAZoCWgPQwgb2gBswLdyQJSGlFKUaBVNWQNoFkdAlLfLCWNWEXV9lChoBmgJaA9DCNs2jILgWV5AlIaUUpRoFU3oA2gWR0CUvRGhmGucdX2UKGgGaAloD0MIMPKyJpasbECUhpRSlGgVTSkDaBZHQJS9iUbDMvB1fZQoaAZoCWgPQwjzOAzmr3tmQJSGlFKUaBVN6ANoFkdAlL42O2iL23V9lChoBmgJaA9DCPse9dcrKG9AlIaUUpRoFU1FA2gWR0CUv7FOO802dX2UKGgGaAloD0MIzAhvD0LcOkCUhpRSlGgVS+loFkdAlMHfoq0+knV9lChoBmgJaA9DCKJD4EigcWVAlIaUUpRoFU3oA2gWR0CUwe4VRDTjdX2UKGgGaAloD0MIV0PiHotLcECUhpRSlGgVTTsBaBZHQJTB9u5z5oJ1fZQoaAZoCWgPQwjytPzA1VVnQJSGlFKUaBVN6ANoFkdAlMLoEnssx3V9lChoBmgJaA9DCNJUT+YfNG5AlIaUUpRoFU2MA2gWR0CUw0NNrTH9dX2UKGgGaAloD0MIwM+4cCDfb0CUhpRSlGgVTVUBaBZHQJTGE1VHWjJ1fZQoaAZoCWgPQwhVbMzriPZxQJSGlFKUaBVNkwJoFkdAlMd4smOU+3V9lChoBmgJaA9DCOc5It/l0nBAlIaUUpRoFU1ZAmgWR0CUzyvUjLSvdX2UKGgGaAloD0MIgez17g+xbUCUhpRSlGgVTVEBaBZHQJTRxzwMH8l1fZQoaAZoCWgPQwiGPIIbKWNoQJSGlFKUaBVN6ANoFkdAlNJauwHJLnV9lChoBmgJaA9DCCv7rgj+YHFAlIaUUpRoFU13AWgWR0CU0yuEEkjYdX2UKGgGaAloD0MIvvp46DubcUCUhpRSlGgVTQ8DaBZHQJTXOi+L3sZ1fZQoaAZoCWgPQwiSBOEKqIdwQJSGlFKUaBVNeAJoFkdAlNkikbgjyHV9lChoBmgJaA9DCLGmsigsG3NAlIaUUpRoFU1mAmgWR0CU2qcbBGhFdX2UKGgGaAloD0MI1uQpq2mlckCUhpRSlGgVTbsDaBZHQJTb9xwQ1791fZQoaAZoCWgPQwgFUIws2ZxwQJSGlFKUaBVNzwJoFkdAlNxwRChN/XV9lChoBmgJaA9DCAra5PDJlHBAlIaUUpRoFU2hA2gWR0CU3XL8aXKKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6453a9d5a650c3610a59483e2d4485b8ab74cdfe24dc03cff6b2b1c8e25d98cd
|
3 |
+
size 147544
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c158e69d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c158e6a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c158e6af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c158e6b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7c158e6c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7c158e6ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c158e6d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c158e6dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7c158e6e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c158e6ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c158e6f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c158ea040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7c158e80f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675797483275425299,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr1AjxI37C6abiftWJ2zLBf5kS6Oz6kNAAAgD8AAIA/mmK6PZO8ZT9IA6s87a6avtlG5j04+Cm9AAAAAAAAAACmT6G9KYEdvMbCvzwnL7W6ERRSPa7NKj4AAIA/AACAP1pvlr32jD26Am2buZrnJjPsPUc7yji1OAAAgD8AAIA/YBUWvuMeBT8m5R4+go2OvjgxHL0n/5q9AAAAAAAAAACAAfa9RlOpPtMH5j3zn4K+b8LYPI2qL70AAAAAAAAAAJrN7jt7tNC4roI8uSBUB7Q87JC7+mZeOAAAgD8AAIA/MyvavMOpNLoNAvq1hDTzsMM4FLqZNiQ1AACAPwAAgD+amXA79txrurRlR7tWBMa2xrtdu1P4MDYAAIA/AACAP8DFnD5DDUc/s9TtvTfjsb7tmE4+K512vgAAAAAAAAAAzQAbPUiX1Lrabmi7cA2VPLr53bteAoE9AACAPwAAgD86rwi+XHt1uujZjDhCfoazBzcJujHxobcAAIA/AACAP3Pw0L3DMRy6ZQJguiJ4VDWe1pE5zVqAOQAAgD8AAAAAC3CWvkkvPD8BGQE+kjfSvg8XyL2Ecr89AAAAAAAAAACa1WE8XCcAujqZjrlR/u20u+mAO78oqDgAAIA/AACAPwAVRD24BuW5YE9jusRLyLTO/rI6NZ2DOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR+UmaumuZ0CUhpRSlIwBbJRN6AOMAXSUR0CTib/vv0AcdX2UKGgGaAloD0MI1lOrr67GZECUhpRSlGgVTegDaBZHQJOLvZsbedl1fZQoaAZoCWgPQwib49wm3J1gQJSGlFKUaBVN6ANoFkdAk41NAcDKYHV9lChoBmgJaA9DCGmKAKd3ymJAlIaUUpRoFU3oA2gWR0CTkN2hIvrXdX2UKGgGaAloD0MIYrt7gG61YUCUhpRSlGgVTegDaBZHQJORRSzgMtt1fZQoaAZoCWgPQwj3yycrBn5nQJSGlFKUaBVN6ANoFkdAk5U9jgAIY3V9lChoBmgJaA9DCI7nM6BeMmhAlIaUUpRoFU3oA2gWR0CTmMQP7N0OdX2UKGgGaAloD0MI9BjlmRcLYECUhpRSlGgVTegDaBZHQJObNf+jua51fZQoaAZoCWgPQwj19ueioVFiQJSGlFKUaBVN6ANoFkdAk52gk5ZKWnV9lChoBmgJaA9DCPMeZ5qwDG9AlIaUUpRoFU2HAWgWR0CTnxyXlbNbdX2UKGgGaAloD0MI7upVZHQeZkCUhpRSlGgVTegDaBZHQJOiRZowmE51fZQoaAZoCWgPQwhgrG9gcodgQJSGlFKUaBVN6ANoFkdAk6jrFS88LnV9lChoBmgJaA9DCEF+NnLdO2VAlIaUUpRoFU3oA2gWR0CTq4MJQcghdX2UKGgGaAloD0MIieyDLAslX0CUhpRSlGgVTegDaBZHQJOvCnEVFhJ1fZQoaAZoCWgPQwiPGaiMfx1lQJSGlFKUaBVN6ANoFkdAk8dyBf8dgnV9lChoBmgJaA9DCAdcV8xIEXBAlIaUUpRoFU2vAmgWR0CTych4MWoFdX2UKGgGaAloD0MIqyUd5WDrW0CUhpRSlGgVTegDaBZHQJPKZ/Tb3491fZQoaAZoCWgPQwgnTu53KPFnQJSGlFKUaBVN6ANoFkdAk85pbpu/DnV9lChoBmgJaA9DCCLDKt4Ii3BAlIaUUpRoFU0kA2gWR0CT0HOtnwocdX2UKGgGaAloD0MIcXK/Q5F/ckCUhpRSlGgVTeoBaBZHQJPSc1VHWjJ1fZQoaAZoCWgPQwgAyXTo9KpKQJSGlFKUaBVLy2gWR0CT0w8yN4qxdX2UKGgGaAloD0MIa4MT0S8AYkCUhpRSlGgVTegDaBZHQJPV61twaR91fZQoaAZoCWgPQwgOaOkKtnZhQJSGlFKUaBVN6ANoFkdAk9bp71Iy03V9lChoBmgJaA9DCGk1JO4xXGZAlIaUUpRoFU3oA2gWR0CT3Jon8baRdX2UKGgGaAloD0MI0ZZzKa76aECUhpRSlGgVTegDaBZHQJPhApvxYq51fZQoaAZoCWgPQwjpCyHnfRZkQJSGlFKUaBVN6ANoFkdAk+QFQhwEQ3V9lChoBmgJaA9DCLhbkgP2a2VAlIaUUpRoFU3oA2gWR0CT5tZAprk9dX2UKGgGaAloD0MILo1feKUgYkCUhpRSlGgVTegDaBZHQJPohW6shgV1fZQoaAZoCWgPQwgC8bp+AVBxQJSGlFKUaBVNmgJoFkdAk+yQ8W9DhXV9lChoBmgJaA9DCA+XHHdKj2VAlIaUUpRoFU3oA2gWR0CT81SLqD9PdX2UKGgGaAloD0MI/WzkuikKZUCUhpRSlGgVTegDaBZHQJP2QFqzqr11fZQoaAZoCWgPQwjM8J9uIDNlQJSGlFKUaBVN6ANoFkdAk/u3/T9bYHV9lChoBmgJaA9DCFnBb0MMrmdAlIaUUpRoFU3oA2gWR0CUF+h3aBZqdX2UKGgGaAloD0MIrOKNzCOXQECUhpRSlGgVS85oFkdAlBhYbbUPQXV9lChoBmgJaA9DCNKsbB/yhmJAlIaUUpRoFU3oA2gWR0CUG6Mm4RVZdX2UKGgGaAloD0MIvAZ96e2CYkCUhpRSlGgVTegDaBZHQJQd3LQokRl1fZQoaAZoCWgPQwi371F/vfxjQJSGlFKUaBVN6ANoFkdAlCAsFY+0PnV9lChoBmgJaA9DCM7drpemZGVAlIaUUpRoFU3oA2gWR0CUIOMb3oLYdX2UKGgGaAloD0MI8aFES57EYUCUhpRSlGgVTegDaBZHQJQkHuSfUWl1fZQoaAZoCWgPQwgOu+8YHrNnQJSGlFKUaBVN6ANoFkdAlCUthNM4+HV9lChoBmgJaA9DCAWKWMTwoHFAlIaUUpRoFU2TAWgWR0CUJSz5oGpudX2UKGgGaAloD0MIyyvX22bXUkCUhpRSlGgVS69oFkdAlClQ7PppvnV9lChoBmgJaA9DCPAxWHEqmmVAlIaUUpRoFU3oA2gWR0CUKurf+CK8dX2UKGgGaAloD0MIwXEZN7UFZECUhpRSlGgVTegDaBZHQJQvDvJA+px1fZQoaAZoCWgPQwgwndZt0HlgQJSGlFKUaBVN6ANoFkdAlDIGXsw+MnV9lChoBmgJaA9DCLb0aKqnNXBAlIaUUpRoFU2zA2gWR0CUNHpkwvg4dX2UKGgGaAloD0MIdeeJ52znZECUhpRSlGgVTegDaBZHQJQ167VawEB1fZQoaAZoCWgPQwhB8WPMXcFRQJSGlFKUaBVLw2gWR0CUNkG5+YtydX2UKGgGaAloD0MI/P84YcLDZECUhpRSlGgVTegDaBZHQJQ9e/i5uqF1fZQoaAZoCWgPQwiAt0CCohJyQJSGlFKUaBVNRANoFkdAlEgROYYzi3V9lChoBmgJaA9DCNRjWwYcq2VAlIaUUpRoFU3oA2gWR0CUTNlI3BHkdX2UKGgGaAloD0MIzVg0nd1WcUCUhpRSlGgVTWsBaBZHQJRNXb8FY+11fZQoaAZoCWgPQwjNj7+0qDRiQJSGlFKUaBVN6ANoFkdAlGTKbe/HpHV9lChoBmgJaA9DCJKwbycRTGVAlIaUUpRoFU3oA2gWR0CUZ+CUHIIXdX2UKGgGaAloD0MIxt/2BInTYECUhpRSlGgVTegDaBZHQJRp7PjXFtN1fZQoaAZoCWgPQwheLAyRU8lkQJSGlFKUaBVN6ANoFkdAlGwR5ooNNXV9lChoBmgJaA9DCIZVvJH5zHBAlIaUUpRoFU0yAWgWR0CUcItAs053dX2UKGgGaAloD0MIjxg9t1BfZUCUhpRSlGgVTegDaBZHQJRw3naFmFt1fZQoaAZoCWgPQwjjUSrhCcFnQJSGlFKUaBVN6ANoFkdAlHIaV+qioXV9lChoBmgJaA9DCMfYCS/BvWFAlIaUUpRoFU3oA2gWR0CUchwIdELIdX2UKGgGaAloD0MIqWdBKO9YcECUhpRSlGgVTesCaBZHQJRySBczImx1fZQoaAZoCWgPQwj1LAjlfa5nQJSGlFKUaBVN6ANoFkdAlHbWVzIV/XV9lChoBmgJaA9DCMpS6/3GxG9AlIaUUpRoFU0mA2gWR0CUeGVtoBaLdX2UKGgGaAloD0MIYRvxZDcVQ0CUhpRSlGgVS8VoFkdAlHv8JIDoyXV9lChoBmgJaA9DCNJVurtOwGNAlIaUUpRoFU3oA2gWR0CUfaCT2WY4dX2UKGgGaAloD0MISnuDL4w2cUCUhpRSlGgVTR4DaBZHQJR+uURnOB11fZQoaAZoCWgPQwg5mbhVkB9iQJSGlFKUaBVN6ANoFkdAlII1Vo6CDnV9lChoBmgJaA9DCG3/ykpTSHBAlIaUUpRoFU1bAWgWR0CUhSLamGdqdX2UKGgGaAloD0MIbhRZa6j9bUCUhpRSlGgVTegBaBZHQJSHQfvF3px1fZQoaAZoCWgPQwjDRlm/mcZuQJSGlFKUaBVNmwJoFkdAlIjHYQJ5V3V9lChoBmgJaA9DCA00n3M3fXJAlIaUUpRoFU0cA2gWR0CUi10m+j/NdX2UKGgGaAloD0MI0GG+vADEZECUhpRSlGgVTegDaBZHQJSQ8CeVcD91fZQoaAZoCWgPQwixFMlXAixvQJSGlFKUaBVNtgFoFkdAlJj7R8c+7nV9lChoBmgJaA9DCDPgLCVLGG5AlIaUUpRoFU2DAWgWR0CUsfpEhJRPdX2UKGgGaAloD0MIYYxIFNrAcUCUhpRSlGgVTXABaBZHQJSy3vx6OYJ1fZQoaAZoCWgPQwhPHhZqTcNwQJSGlFKUaBVN1ANoFkdAlLNN9x6v7nV9lChoBmgJaA9DCOgRo+eWrXFAlIaUUpRoFU3PAWgWR0CUtHUbT+efdX2UKGgGaAloD0MIX10VqMUCZ0CUhpRSlGgVTegDaBZHQJS3einHead1fZQoaAZoCWgPQwgb2gBswLdyQJSGlFKUaBVNWQNoFkdAlLfLCWNWEXV9lChoBmgJaA9DCNs2jILgWV5AlIaUUpRoFU3oA2gWR0CUvRGhmGucdX2UKGgGaAloD0MIMPKyJpasbECUhpRSlGgVTSkDaBZHQJS9iUbDMvB1fZQoaAZoCWgPQwjzOAzmr3tmQJSGlFKUaBVN6ANoFkdAlL42O2iL23V9lChoBmgJaA9DCPse9dcrKG9AlIaUUpRoFU1FA2gWR0CUv7FOO802dX2UKGgGaAloD0MIzAhvD0LcOkCUhpRSlGgVS+loFkdAlMHfoq0+knV9lChoBmgJaA9DCKJD4EigcWVAlIaUUpRoFU3oA2gWR0CUwe4VRDTjdX2UKGgGaAloD0MIV0PiHotLcECUhpRSlGgVTTsBaBZHQJTB9u5z5oJ1fZQoaAZoCWgPQwjytPzA1VVnQJSGlFKUaBVN6ANoFkdAlMLoEnssx3V9lChoBmgJaA9DCNJUT+YfNG5AlIaUUpRoFU2MA2gWR0CUw0NNrTH9dX2UKGgGaAloD0MIwM+4cCDfb0CUhpRSlGgVTVUBaBZHQJTGE1VHWjJ1fZQoaAZoCWgPQwhVbMzriPZxQJSGlFKUaBVNkwJoFkdAlMd4smOU+3V9lChoBmgJaA9DCOc5It/l0nBAlIaUUpRoFU1ZAmgWR0CUzyvUjLSvdX2UKGgGaAloD0MIgez17g+xbUCUhpRSlGgVTVEBaBZHQJTRxzwMH8l1fZQoaAZoCWgPQwiGPIIbKWNoQJSGlFKUaBVN6ANoFkdAlNJauwHJLnV9lChoBmgJaA9DCCv7rgj+YHFAlIaUUpRoFU13AWgWR0CU0yuEEkjYdX2UKGgGaAloD0MIvvp46DubcUCUhpRSlGgVTQ8DaBZHQJTXOi+L3sZ1fZQoaAZoCWgPQwiSBOEKqIdwQJSGlFKUaBVNeAJoFkdAlNkikbgjyHV9lChoBmgJaA9DCLGmsigsG3NAlIaUUpRoFU1mAmgWR0CU2qcbBGhFdX2UKGgGaAloD0MI1uQpq2mlckCUhpRSlGgVTbsDaBZHQJTb9xwQ1791fZQoaAZoCWgPQwgFUIws2ZxwQJSGlFKUaBVNzwJoFkdAlNxwRChN/XV9lChoBmgJaA9DCAra5PDJlHBAlIaUUpRoFU2hA2gWR0CU3XL8aXKKdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a111d3d9a8949cedc92f43e847afa1e1b32de234bbdb05470dcfcf0815c70ad0
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:585760eb4fbc78e52bc20717fdd11f7ca98babec1ca836f0ad26f792cb4bf65e
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (231 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.9617822281681, "std_reward": 20.120565252935428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T19:53:31.229468"}
|