File size: 33,334 Bytes
180b798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 |
// Helper Functions
/**
* Utility function to check if the airplane collides with the ground or a building.
*/
function checkCollision(airplane, buildingBoxes) {
// Ground collision
if (airplane.position.y <= 0) {
return true;
}
// Building collisions
for (const box of buildingBoxes) {
if (
airplane.position.x > box.min.x &&
airplane.position.x < box.max.x &&
airplane.position.y > box.min.y &&
airplane.position.y < box.max.y &&
airplane.position.z > box.min.z &&
airplane.position.z < box.max.z
) {
return true;
}
}
return false;
}
/**
* Utility function to update the camera position and orientation to follow the airplane.
*/
function updateCamera(camera, airplane) {
camera.position.set(
airplane.position.x,
airplane.position.y + 5,
airplane.position.z - 10
);
camera.lookAt(airplane.position);
}
/**
* Utility function to update the distance UI element.
*/
function updateDistanceDisplay(airplane, distanceElement) {
const horizontalDistance = Math.sqrt(
airplane.position.x ** 2 + airplane.position.z ** 2
);
distanceElement.innerText = `Distance: ${horizontalDistance.toFixed(2)}`;
}
// Scene Setup
const scene = new THREE.Scene();
// Create sunset gradient background
const canvas = document.createElement('canvas');
canvas.width = 1;
canvas.height = 256;
const context = canvas.getContext('2d');
const gradient = context.createLinearGradient(0, 256, 0, 0);
gradient.addColorStop(0, '#FF4500'); // Orange-red at the bottom (horizon)
gradient.addColorStop(0.4, '#4169E1'); // Royal blue in the middle
gradient.addColorStop(1, '#000000'); // Black at the top
context.fillStyle = gradient;
context.fillRect(0, 0, 1, 256);
const texture = new THREE.CanvasTexture(canvas);
// Center the texture so rotation pivots around its middle
texture.center.set(0.5, 0.5);
scene.background = texture;
// Create stars in the night sky
function createStars() {
const starsCount = 1000;
const starsGeometry = new THREE.BufferGeometry();
const starPositions = new Float32Array(starsCount * 3);
for (let i = 0; i < starsCount; i++) {
const i3 = i * 3;
// Generate stars in a large hemisphere above the scene
const radius = 500;
const theta = Math.random() * Math.PI * 2;
const phi = Math.random() * Math.PI * 0.65; // Limit to upper hemisphere
starPositions[i3] = radius * Math.sin(phi) * Math.cos(theta);
starPositions[i3 + 1] = radius * Math.cos(phi) + 100; // Lift up a bit
starPositions[i3 + 2] = radius * Math.sin(phi) * Math.sin(theta);
}
starsGeometry.setAttribute(
"position",
new THREE.BufferAttribute(starPositions, 3)
);
const starsMaterial = new THREE.PointsMaterial({
color: 0xffffff,
size: 1,
sizeAttenuation: false,
});
const stars = new THREE.Points(starsGeometry, starsMaterial);
scene.add(stars);
}
createStars();
// Camera Setup
const camera = new THREE.PerspectiveCamera(
75,
window.innerWidth / window.innerHeight,
0.1,
1000
);
// Renderer Setup
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
document.body.appendChild(renderer.domElement);
// Lighting
const light = new THREE.DirectionalLight(0xfff0dd, 1.5); // Warm sunlight color
light.position.set(-100, 200, -50); // More realistic sun angle
light.castShadow = true;
light.shadow.mapSize.width = 512;
light.shadow.mapSize.height = 512;
light.shadow.camera.near = 0.1;
light.shadow.camera.far = 500;
light.shadow.camera.left = -50;
light.shadow.camera.right = 50;
light.shadow.camera.top = 50;
light.shadow.camera.bottom = -50;
light.shadow.bias = -0.0001;
const ambientLight = new THREE.AmbientLight(0x6688cc, 0.4); // Subtle blue sky light
scene.add(ambientLight);
scene.add(light);
// Paper Airplane
function createPaperAirplane() {
// Create a group to hold all paper airplane parts
const airplaneGroup = new THREE.Group();
// Main body/fuselage (triangle)
const bodyShape = new THREE.Shape();
bodyShape.moveTo(0, 0); // Nose
bodyShape.lineTo(-0.2, 0.5); // Left mid fold
bodyShape.lineTo(-0.4, 1.0); // Left back corner
bodyShape.lineTo(0.4, 1.0); // Right back corner
bodyShape.lineTo(0.2, 0.5); // Right mid fold
bodyShape.lineTo(0, 0); // Back to nose
const bodyGeometry = new THREE.ExtrudeGeometry(bodyShape, {
depth: 0.03,
bevelEnabled: false
});
const paperMaterial = new THREE.MeshLambertMaterial({
color: 0xf0f0f0,
side: THREE.DoubleSide,
});
const body = new THREE.Mesh(bodyGeometry, paperMaterial);
body.castShadow = true;
body.receiveShadow = true;
// Left wing (triangle extending outward)
const leftWingShape = new THREE.Shape();
leftWingShape.moveTo(0, 0.2); // Front connection to body
leftWingShape.lineTo(-0.3, 0.8); // Back connection to body
leftWingShape.lineTo(-0.7, 0.5); // Wing tip
leftWingShape.lineTo(0, 0.2); // Back to start
const leftWingGeometry = new THREE.ExtrudeGeometry(leftWingShape, {
depth: 0.02,
bevelEnabled: false
});
const leftWing = new THREE.Mesh(leftWingGeometry, paperMaterial);
leftWing.castShadow = true;
leftWing.receiveShadow = true;
leftWing.position.y = 0.01; // Slight offset to prevent z-fighting
leftWing.rotation.x = 0.2;
// Right wing (triangle extending outward)
const rightWingShape = new THREE.Shape();
rightWingShape.moveTo(0, 0.2); // Front connection to body
rightWingShape.lineTo(0.3, 0.8); // Back connection to body
rightWingShape.lineTo(0.7, 0.5); // Wing tip
rightWingShape.lineTo(0, 0.2); // Back to start
const rightWingGeometry = new THREE.ExtrudeGeometry(rightWingShape, {
depth: 0.02,
bevelEnabled: false
});
const rightWing = new THREE.Mesh(rightWingGeometry, paperMaterial);
rightWing.castShadow = true;
rightWing.receiveShadow = true;
rightWing.position.y = 0.02; // Slight offset to prevent z-fighting
rightWing.rotation.x = 0.2;
// Add center fold line for realism
const foldLineGeometry = new THREE.BufferGeometry();
const foldLinePoints = [
new THREE.Vector3(0, 0.03, 0), // Slightly above nose
new THREE.Vector3(0, 0.03, 1.0), // Slightly above back
];
foldLineGeometry.setFromPoints(foldLinePoints);
const foldLineMaterial = new THREE.LineBasicMaterial({ color: 0xdddddd });
const foldLine = new THREE.Line(foldLineGeometry, foldLineMaterial);
foldLine.position.z = 0.026; // Slightly above the extruded body
// Add all parts to the group
airplaneGroup.add(body);
airplaneGroup.add(leftWing);
airplaneGroup.add(rightWing);
airplaneGroup.add(foldLine);
// Rotate and position
airplaneGroup.rotation.order = "ZXY";
airplaneGroup.rotation.x = -Math.PI / 2; // Rotate to face forward
return airplaneGroup;
}
const airplane = createPaperAirplane();
airplane.position.set(0, 10.1, 0);
scene.add(airplane);
// Cityscape Environment
const buildingGeometry = new THREE.BoxGeometry(1, 1, 1);
// Realistic building colors
const buildingColors = [
0x8c8c8c, // Concrete gray
0x9c5b3c, // Brick red-brown
0x5a7d9e, // Steel blue
0xbcbcbc, // Light gray
0x4a4a4a, // Dark gray
];
const buildings = [];
const buildingBoxes = [];
// Window parameters
const floorHeight = 1;
const windowWidth = 0.2;
const windowHeight = 0.3;
const horizontalSpacingMin = 0.1;
const epsilon = 0.01;
// Create two window materials - dark and lit
const darkWindowMaterial = new THREE.MeshLambertMaterial({
color: 0x0a1a2a,
transparent: true,
opacity: 0.5,
}); // Dark blue glass
const litWindowMaterial = new THREE.MeshLambertMaterial({
color: 0xffeb3b,
transparent: true,
opacity: 0.8,
emissive: 0xffeb3b,
emissiveIntensity: 0.5,
}); // Yellow lit windows
function createBuilding(x, z, height, width) {
const colorIndex = Math.floor(Math.random() * buildingColors.length);
const buildingMaterial = new THREE.MeshLambertMaterial({
color: buildingColors[colorIndex],
});
const building = new THREE.Mesh(buildingGeometry, buildingMaterial);
building.scale.set(width, height, width);
building.position.set(x, height / 2, z);
building.castShadow = true;
building.receiveShadow = true;
scene.add(building);
buildings.push(building);
buildingBoxes.push({
min: new THREE.Vector3(x - width / 2, 0, z - width / 2),
max: new THREE.Vector3(x + width / 2, height, z + width / 2),
});
// Add windows if building is sizable
const numFloors = Math.floor(height / floorHeight);
if (numFloors > 0) {
const n_horizontal = Math.floor(
(width + horizontalSpacingMin) / (windowWidth + horizontalSpacingMin)
);
if (n_horizontal > 0) {
const spacing_horizontal =
(width - n_horizontal * windowWidth) / (n_horizontal + 1);
const faces = [
{
normal: new THREE.Vector3(0, 0, 1),
offset: width / 2 + epsilon,
rotationY: 0,
}, // Front
{
normal: new THREE.Vector3(0, 0, -1),
offset: -width / 2 - epsilon,
rotationY: Math.PI,
}, // Back
{
normal: new THREE.Vector3(-1, 0, 0),
offset: -width / 2 - epsilon,
rotationY: -Math.PI / 2,
}, // Left
{
normal: new THREE.Vector3(1, 0, 0),
offset: width / 2 + epsilon,
rotationY: Math.PI / 2,
}, // Right
];
// Create a merged BufferGeometry for all windows
const windowCount = numFloors * n_horizontal * faces.length;
const positions = new Float32Array(windowCount * 12); // 4 vertices * 3 coords per window
const indices = new Uint16Array(windowCount * 6); // 2 triangles * 3 indices per window
let posIndex = 0;
let idxIndex = 0;
let vertexOffset = 0;
for (const face of faces) {
const { offset, rotationY } = face;
const rotationMatrix = new THREE.Matrix4().makeRotationY(rotationY);
for (let k = 0; k < numFloors; k++) {
const y = (k + 0.5) * floorHeight;
for (let m = 0; m < n_horizontal; m++) {
let x_local, z_local;
if (face.normal.x !== 0) {
// Left or right face
z_local =
z -
width / 2 +
spacing_horizontal +
m * (windowWidth + spacing_horizontal) +
windowWidth / 2;
x_local = x + offset;
} else {
// Front or back face
x_local =
x -
width / 2 +
spacing_horizontal +
m * (windowWidth + spacing_horizontal) +
windowWidth / 2;
z_local = z + offset;
}
const windowPos = new THREE.Vector3(x_local, y, z_local);
// Define the four vertices of the window plane
const halfW = windowWidth / 2;
const halfH = windowHeight / 2;
const vertices = [
new THREE.Vector3(-halfW, -halfH, 0),
new THREE.Vector3(halfW, -halfH, 0),
new THREE.Vector3(halfW, halfH, 0),
new THREE.Vector3(-halfW, halfH, 0),
];
// Apply rotation and translation
vertices.forEach((v) => {
v.applyMatrix4(rotationMatrix);
v.add(windowPos);
});
// Add positions
positions[posIndex++] = vertices[0].x;
positions[posIndex++] = vertices[0].y;
positions[posIndex++] = vertices[0].z;
positions[posIndex++] = vertices[1].x;
positions[posIndex++] = vertices[1].y;
positions[posIndex++] = vertices[1].z;
positions[posIndex++] = vertices[2].x;
positions[posIndex++] = vertices[2].y;
positions[posIndex++] = vertices[2].z;
positions[posIndex++] = vertices[3].x;
positions[posIndex++] = vertices[3].y;
positions[posIndex++] = vertices[3].z;
// Add indices (two triangles per quad)
indices[idxIndex++] = vertexOffset + 0;
indices[idxIndex++] = vertexOffset + 1;
indices[idxIndex++] = vertexOffset + 2;
indices[idxIndex++] = vertexOffset + 0;
indices[idxIndex++] = vertexOffset + 2;
indices[idxIndex++] = vertexOffset + 3;
vertexOffset += 4;
}
}
}
// Create and populate BufferGeometry
const mergedWindowGeometry = new THREE.BufferGeometry();
mergedWindowGeometry.setAttribute(
"position",
new THREE.BufferAttribute(positions, 3)
);
mergedWindowGeometry.setIndex(new THREE.BufferAttribute(indices, 1));
// Append window positions to global arrays
for (let i = 0; i < positions.length; i += 12) {
if (Math.random() < 0.2) {
// 20% chance to be lit
allLitWindowPositions.push(...positions.slice(i, i + 12));
} else {
allDarkWindowPositions.push(...positions.slice(i, i + 12));
}
}
}
}
return building;
}
function createGlobe(x, y, z) {
// Create the main sphere
const geometry = new THREE.SphereGeometry(1.0, 16, 16);
const material = new THREE.MeshBasicMaterial({
color: 0x00ff00,
});
const globe = new THREE.Mesh(geometry, material);
globe.position.set(x, y, z);
// Create outer glow sphere
const glowGeometry = new THREE.SphereGeometry(1.3, 16, 16);
const glowMaterial = new THREE.MeshBasicMaterial({
color: 0x00ff00,
transparent: true,
opacity: 0.3,
side: THREE.BackSide
});
const glow = new THREE.Mesh(glowGeometry, glowMaterial);
globe.add(glow);
// Create second outer glow for more intensity
const glow2Geometry = new THREE.SphereGeometry(1.6, 16, 16);
const glow2Material = new THREE.MeshBasicMaterial({
color: 0x00ff00,
transparent: true,
opacity: 0.15,
side: THREE.BackSide
});
const glow2 = new THREE.Mesh(glow2Geometry, glow2Material);
globe.add(glow2);
// Add a pulsing glow effect
globe.userData.pulsePhase = Math.random() * Math.PI * 2; // Random starting phase
globe.userData.glowLayers = [glow, glow2]; // Store references to glow layers
scene.add(globe);
return globe;
}
// Generate more buildings
// Arrays for merging windows
let allDarkWindowPositions = [];
let allLitWindowPositions = [];
for (let z = 20; z < 700; z += 5) {
// Start at z=20 instead of z=10 to double the gap
for (let x = -60; x <= 60; x += 5) {
let placeBuilding = Math.random() > 0.3;
let height, width;
// Calculate base height first
const baseHeight = Math.random() * 15 + 5; // Normal height range: 5 to 20
// 2% chance for a super tall building (30% higher)
if (Math.random() < 0.02) {
height = baseHeight * 1.3; // 30% higher than normal buildings
width = Math.random() * 4 + 3; // Wider base for tall buildings
} else {
height = baseHeight;
width = Math.random() * 3 + 1;
}
if (placeBuilding) {
const offsetX = (Math.random() - 0.5) * 2;
const offsetZ = (Math.random() - 0.5) * 2;
createBuilding(x + offsetX, z + offsetZ, height, width);
}
}
}
// Starting building for takeoff
const startingBuilding = createBuilding(0, 0, 10, 2);
startingBuilding.material.color.set(0x0000ff);
// Create boost recharge globes
let globes = [];
function initGlobes() {
// Remove existing globes
globes.forEach((globe) => scene.remove(globe));
globes = [];
// Define globe z-positions
const globe_z_positions = [];
for (let z = 40; z <= 680; z += 20) {
globe_z_positions.push(z);
}
// Place globes relative to buildings
globe_z_positions.forEach((z) => {
const nearbyBuildings = buildings.filter(
(b) => b.position.z >= z - 10 && b.position.z <= z + 10
);
if (nearbyBuildings.length > 0) {
const randomBuilding = nearbyBuildings[Math.floor(Math.random() * nearbyBuildings.length)];
const offsetX = (Math.random() - 0.5) * 2;
const offsetZ = (Math.random() - 0.5) * 2;
const globeX = randomBuilding.position.x + offsetX;
const globeZ = randomBuilding.position.z + offsetZ;
const globeY = randomBuilding.position.y + randomBuilding.scale.y / 2 + 5;
const globe = createGlobe(globeX, globeY, globeZ);
globes.push(globe);
}
});
}
// Initialize globes after buildings are created
initGlobes();
// Create merged window meshes
const darkGeometry = new THREE.BufferGeometry();
const darkPositionsArray = new Float32Array(allDarkWindowPositions);
darkGeometry.setAttribute(
"position",
new THREE.BufferAttribute(darkPositionsArray, 3)
);
const numDarkWindows = allDarkWindowPositions.length / 12;
const darkIndices = [];
for (let i = 0; i < numDarkWindows; i++) {
const offset = i * 4;
darkIndices.push(
offset,
offset + 1,
offset + 2,
offset,
offset + 2,
offset + 3
);
}
darkGeometry.setIndex(darkIndices);
const darkWindowsMesh = new THREE.Mesh(darkGeometry, darkWindowMaterial);
darkWindowsMesh.receiveShadow = true;
scene.add(darkWindowsMesh);
// Create lit windows mesh
const litGeometry = new THREE.BufferGeometry();
const litPositionsArray = new Float32Array(allLitWindowPositions);
litGeometry.setAttribute(
"position",
new THREE.BufferAttribute(litPositionsArray, 3)
);
const numLitWindows = allLitWindowPositions.length / 12;
const litIndices = [];
for (let i = 0; i < numLitWindows; i++) {
const offset = i * 4;
litIndices.push(
offset,
offset + 1,
offset + 2,
offset,
offset + 2,
offset + 3
);
}
litGeometry.setIndex(litIndices);
const litWindowsMesh = new THREE.Mesh(litGeometry, litWindowMaterial);
litWindowsMesh.receiveShadow = true;
scene.add(litWindowsMesh);
// Ground Plane with texture
const groundGeometry = new THREE.PlaneGeometry(2000, 2000, 100, 100);
const groundCanvas = document.createElement('canvas');
groundCanvas.width = 1024;
groundCanvas.height = 1024;
const groundContext = groundCanvas.getContext('2d');
// Fill with dark base color
groundContext.fillStyle = '#111111';
groundContext.fillRect(0, 0, 1024, 1024);
// Draw grid pattern
groundContext.strokeStyle = '#333333';
groundContext.lineWidth = 1;
// Draw major grid lines
const majorGridSize = 64;
groundContext.beginPath();
for (let i = 0; i <= 1024; i += majorGridSize) {
groundContext.moveTo(i, 0);
groundContext.lineTo(i, 1024);
groundContext.moveTo(0, i);
groundContext.lineTo(1024, i);
}
groundContext.stroke();
// Draw minor grid lines
groundContext.strokeStyle = '#222222';
groundContext.lineWidth = 0.5;
const minorGridSize = 16;
groundContext.beginPath();
for (let i = 0; i <= 1024; i += minorGridSize) {
if (i % majorGridSize !== 0) { // Skip where major lines already exist
groundContext.moveTo(i, 0);
groundContext.lineTo(i, 1024);
groundContext.moveTo(0, i);
groundContext.lineTo(1024, i);
}
}
groundContext.stroke();
// Add radial gradient for fade-out effect
const groundGradient = groundContext.createRadialGradient(512, 512, 0, 512, 512, 700);
groundGradient.addColorStop(0, 'rgba(0, 0, 0, 0)');
groundGradient.addColorStop(0.7, 'rgba(0, 0, 0, 0.3)');
groundGradient.addColorStop(1, 'rgba(0, 0, 0, 0.9)');
groundContext.fillStyle = groundGradient;
groundContext.fillRect(0, 0, 1024, 1024);
const groundTexture = new THREE.CanvasTexture(groundCanvas);
groundTexture.wrapS = THREE.RepeatWrapping;
groundTexture.wrapT = THREE.RepeatWrapping;
groundTexture.repeat.set(4, 4);
const groundMaterial = new THREE.MeshLambertMaterial({
map: groundTexture,
transparent: true,
opacity: 0.9
});
const ground = new THREE.Mesh(groundGeometry, groundMaterial);
ground.rotation.x = -Math.PI / 2;
ground.position.y = 0;
ground.receiveShadow = true;
scene.add(ground);
// Trail system for the airplane
const trailLength = 50; // Number of points in the trail
const trailPositions = new Float32Array(trailLength * 3);
const trailGeometry = new THREE.BufferGeometry();
trailGeometry.setAttribute(
"position",
new THREE.BufferAttribute(trailPositions, 3)
);
// Create gradient trail material
const trailMaterial = new THREE.LineBasicMaterial({
color: 0x88ccff,
transparent: true,
opacity: 0.7,
vertexColors: true,
linewidth: 1,
});
// Add vertex colors for gradient effect
const trailColors = new Float32Array(trailLength * 3);
for (let i = 0; i < trailLength; i++) {
// Create a gradient from light blue to darker blue
const intensity = 1 - i / trailLength;
trailColors[i * 3] = 0.4 * intensity; // R (less red for blue color)
trailColors[i * 3 + 1] = 0.7 * intensity; // G (medium green for cyan/blue)
trailColors[i * 3 + 2] = 1.0 * intensity; // B (full blue)
}
trailGeometry.setAttribute("color", new THREE.BufferAttribute(trailColors, 3));
const trail = new THREE.Line(trailGeometry, trailMaterial);
scene.add(trail);
// Function to update the trail positions
function updateTrail(newPosition) {
// Shift all positions one slot back
for (let i = trailLength - 1; i > 0; i--) {
trailPositions[i * 3] = trailPositions[(i - 1) * 3];
trailPositions[i * 3 + 1] = trailPositions[(i - 1) * 3 + 1];
trailPositions[i * 3 + 2] = trailPositions[(i - 1) * 3 + 2];
}
// Add the new position at the front
trailPositions[0] = newPosition.x;
trailPositions[1] = newPosition.y;
trailPositions[2] = newPosition.z;
// Update the geometry
trailGeometry.attributes.position.needsUpdate = true;
}
// Game State and Physics Variables
let gameState = "aiming";
let velocity = new THREE.Vector3(0, 0, 0);
const gravity = 2.5; // Increased gravity from 1 to 2.5
const acceleration = new THREE.Vector3(0, -gravity, 0);
// Power charging variables
let isCharging = false;
let currentPower = 0;
const maxPower = 10;
const powerIncreaseRate = 20; // units per second (4x faster)
// Launch controls
window.addEventListener("keydown", (event) => {
if (event.code === "Space") {
if (gameState === "aiming") {
event.preventDefault();
isCharging = true;
} else if (gameState === "ended") {
event.preventDefault();
resetGame();
}
} else if (event.key === "ArrowDown") {
if (gameState === "flying") {
event.preventDefault();
isBoosting = true;
}
} else if (event.key === "ArrowLeft") {
leftPressed = true;
} else if (event.key === "ArrowRight") {
rightPressed = true;
}
});
window.addEventListener("keyup", (event) => {
if (event.code === "Space") {
if (gameState === "aiming") {
event.preventDefault();
isCharging = false;
launchAirplane();
} else if (gameState === "ended") {
event.preventDefault();
resetGame();
}
} else if (event.key === "ArrowDown") {
if (gameState === "flying") {
event.preventDefault();
isBoosting = false;
}
} else if (event.key === "Escape") {
// Restart the game instantly when Escape key is pressed
event.preventDefault();
resetGame();
}
});
window.addEventListener(
"touchstart",
(event) => {
if (gameState === "aiming") {
event.preventDefault();
isCharging = true;
} else if (gameState === "flying") {
event.preventDefault();
// For touch screens, we'll still allow touch to boost since there's no down arrow
isBoosting = true;
}
},
{ passive: false }
);
window.addEventListener(
"touchend",
(event) => {
if (gameState === "aiming") {
event.preventDefault();
isCharging = false;
launchAirplane();
} else if (gameState === "flying") {
event.preventDefault();
isBoosting = false;
} else if (gameState === "ended") {
event.preventDefault();
resetGame();
}
},
{ passive: false }
);
function launchAirplane() {
const pitchAngle = Math.PI / 4; // 45 degrees
const initialVelocity = new THREE.Vector3(
0,
Math.sin(pitchAngle) * currentPower,
Math.cos(pitchAngle) * currentPower
);
velocity.copy(initialVelocity);
gameState = "flying";
currentPower = 0;
}
// Steering Controls
let leftPressed = false;
let rightPressed = false;
let upPressed = false;
let downPressed = false;
const steeringForce = 5;
const diveForce = 8; // Force applied when diving
let currentTilt = 0;
let currentPitch = 0; // Track pitch angle
// Boost variables
const maxBoostPower = 100;
let boostPower = maxBoostPower;
const boostConsumptionRate = 20; // units per second
const boostForce = 6.0; // increased from 4.5 to 6.0 for more powerful boost
let isBoosting = false;
window.addEventListener("keydown", (event) => {
if (event.key === "ArrowLeft") leftPressed = true;
else if (event.key === "ArrowRight") rightPressed = true;
else if (event.key === "ArrowUp") upPressed = true;
else if (event.key === "ArrowDown") downPressed = true;
});
window.addEventListener("keyup", (event) => {
if (event.key === "ArrowLeft") leftPressed = false;
else if (event.key === "ArrowRight") rightPressed = false;
else if (event.key === "ArrowUp") upPressed = false;
else if (event.key === "ArrowDown") downPressed = false;
});
// Background music setup
const backgroundMusic = document.getElementById('backgroundMusic');
backgroundMusic.volume = 0.5; // Set volume to 50%
// Function to start background music
function startBackgroundMusic() {
backgroundMusic.play().catch(error => {
console.log("Audio playback failed:", error);
});
}
// Try to start music on page load
document.addEventListener('DOMContentLoaded', () => {
// Modern browsers require user interaction before playing audio
document.addEventListener('click', startBackgroundMusic, { once: true });
document.addEventListener('keydown', startBackgroundMusic, { once: true });
document.addEventListener('touchstart', startBackgroundMusic, { once: true });
});
// Animation Loop
const clock = new THREE.Clock();
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
// Update UI elements
if (gameState === "aiming") {
// Always show the power gauge in aiming state
document.getElementById("powerGauge").style.display = "block";
if (isCharging) {
currentPower += powerIncreaseRate * delta;
if (currentPower > maxPower) currentPower = maxPower;
const powerPercentage = (currentPower / maxPower) * 100;
document.getElementById("powerBar").style.width = powerPercentage + "%";
} else {
document.getElementById("powerBar").style.width = "0%";
}
document.getElementById("boostGauge").style.display = "none";
} else if (gameState === "flying") {
document.getElementById("powerGauge").style.display = "none";
document.getElementById("boostGauge").style.display = "block";
const boostPercentage = (boostPower / maxBoostPower) * 100;
document.getElementById("boostBar").style.width = boostPercentage + "%";
} else if (gameState === "ended") {
document.getElementById("powerGauge").style.display = "none";
document.getElementById("boostGauge").style.display = "none";
}
if (gameState === "flying") {
velocity.add(acceleration.clone().multiplyScalar(delta));
if (upPressed) {
// Dive downward when up arrow is pressed
velocity.y -= diveForce * delta;
// Tilt the airplane's nose down when diving
currentPitch = THREE.MathUtils.lerp(currentPitch, 0.3, 0.1); // Gradually tilt nose down
} else if (isBoosting && boostPower > 0) {
velocity.y += boostForce * delta;
boostPower -= boostConsumptionRate * delta;
if (boostPower < 0) boostPower = 0;
// Tilt the airplane's nose up slightly when boosting
currentPitch = THREE.MathUtils.lerp(currentPitch, -0.2, 0.1); // Gradually tilt nose up
} else {
// Return to normal orientation when not boosting or diving
currentPitch = THREE.MathUtils.lerp(currentPitch, 0, 0.1); // Gradually return to neutral
}
// Apply the current pitch to the airplane
airplane.rotation.x = -Math.PI / 2 + currentPitch;
// Create a modified velocity vector with doubled forward (z) speed
const modifiedVelocity = velocity.clone();
modifiedVelocity.z *= 2; // Double the forward speed
airplane.position.add(modifiedVelocity.multiplyScalar(delta));
// Update the trail with the current airplane position
updateTrail(airplane.position);
if (leftPressed) velocity.x += steeringForce * delta; // Inverted: left key moves right
if (rightPressed) velocity.x -= steeringForce * delta; // Inverted: right key moves left
let targetTilt = 0;
if (leftPressed) targetTilt = -Math.PI / 6; // Inverted: negative tilt for left arrow
else if (rightPressed) targetTilt = Math.PI / 6; // Inverted: positive tilt for right arrow
currentTilt = THREE.MathUtils.lerp(currentTilt, targetTilt, 0.1);
airplane.rotation.z = currentTilt;
const collided = checkCollision(airplane, buildingBoxes);
// Check for globe collection
globes = globes.filter((globe) => {
const distance = airplane.position.distanceTo(globe.position);
if (distance < 3.0) { // Increased from 2.0 to 3.0 for larger hitbox (1.5x)
// Collected a globe - recharge boost
boostPower = maxBoostPower;
scene.remove(globe);
// Play ping sound
const pingSound = document.getElementById('pingSound');
pingSound.volume = 0.25; // Set volume to 25% (half of the default 0.5)
pingSound.currentTime = 0; // Reset sound to beginning
pingSound.play().catch(error => {
console.log("Ping sound playback failed:", error);
});
// Add visual feedback
console.log("Globe collected! Boost recharged.");
return false;
}
// Animate globe pulsing
globe.userData.pulsePhase += delta * 2;
const scale = 1 + 0.1 * Math.sin(globe.userData.pulsePhase);
globe.scale.set(scale, scale, scale);
// Animate glow layers
const glowScale = 1 + 0.2 * Math.sin(globe.userData.pulsePhase + Math.PI/4);
const glowOpacity = 0.3 + 0.1 * Math.sin(globe.userData.pulsePhase);
if (globe.userData.glowLayers) {
globe.userData.glowLayers[0].scale.set(glowScale, glowScale, glowScale);
globe.userData.glowLayers[0].material.opacity = glowOpacity;
const glow2Scale = 1 + 0.15 * Math.sin(globe.userData.pulsePhase + Math.PI/2);
const glow2Opacity = 0.15 + 0.05 * Math.sin(globe.userData.pulsePhase + Math.PI/3);
globe.userData.glowLayers[1].scale.set(glow2Scale, glow2Scale, glow2Scale);
globe.userData.glowLayers[1].material.opacity = glow2Opacity;
}
return true;
});
if (collided) {
gameState = "ended";
const finalHorizontalDistance = Math.sqrt(
airplane.position.x ** 2 + airplane.position.z ** 2
);
document.getElementById(
"finalScore"
).innerText = `Final Distance: ${finalHorizontalDistance.toFixed(2)}`;
document.getElementById("finalScore").style.display = "block";
document.getElementById("restart").style.display = "block";
document.getElementById("spaceToRestart").style.display = "block";
}
}
// Camera follows airplane correctly
camera.position.set(
airplane.position.x,
airplane.position.y + 5,
airplane.position.z - 10
);
camera.lookAt(airplane.position);
updateDistanceDisplay(airplane, document.getElementById("distance"));
// Calculate distance and rotate background
const totalCityDistance = 700; // Adjust if needed
const horizontalDistance = Math.sqrt(
airplane.position.x ** 2 + airplane.position.z ** 2
);
const ratio = Math.min(1, horizontalDistance / totalCityDistance);
texture.rotation = ratio * (Math.PI * 0.5); // Up to 90° rotation
texture.needsUpdate = true;
renderer.render(scene, camera);
}
animate();
// Reset Game Function
function resetGame() {
airplane.position.set(0, 10.1, 0);
velocity.set(0, 0, 0);
currentTilt = 0;
currentPitch = 0;
airplane.rotation.z = 0;
airplane.rotation.x = -Math.PI / 2; // Reset pitch to default
gameState = "aiming";
currentPower = 0;
boostPower = maxBoostPower;
// Make sure music is playing
if (backgroundMusic.paused) {
backgroundMusic.play().catch(error => {
console.log("Audio playback failed:", error);
});
}
// Clear the trail when resetting the game
for (let i = 0; i < trailLength * 3; i++) {
trailPositions[i] = 0;
}
trailGeometry.attributes.position.needsUpdate = true;
document.getElementById("powerGauge").style.display = "block"; // Show power gauge on reset
document.getElementById("finalScore").style.display = "none";
document.getElementById("restart").style.display = "none";
document.getElementById("spaceToRestart").style.display = "none";
// Reset globes
initGlobes();
}
document.getElementById("restart").addEventListener("click", resetGame);
// Handle Window Resize
window.addEventListener("resize", () => {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
});
|