Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# This source code is licensed under the license found in the
|
6 |
+
# MIT_LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
import os
|
9 |
+
import pathlib
|
10 |
+
import tempfile
|
11 |
+
from pydub import AudioSegment, silence
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
import torchaudio
|
15 |
+
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
|
16 |
+
from fairseq2.data import Collater, SequenceData, VocabularyInfo
|
17 |
+
from fairseq2.data.audio import (
|
18 |
+
AudioDecoder,
|
19 |
+
WaveformToFbankConverter,
|
20 |
+
WaveformToFbankOutput,
|
21 |
+
)
|
22 |
+
|
23 |
+
from seamless_communication.inference import SequenceGeneratorOptions
|
24 |
+
from fairseq2.generation import NGramRepeatBlockProcessor
|
25 |
+
from fairseq2.memory import MemoryBlock
|
26 |
+
from fairseq2.typing import DataType, Device
|
27 |
+
from huggingface_hub import snapshot_download
|
28 |
+
from seamless_communication.inference import BatchedSpeechOutput, Translator, SequenceGeneratorOptions
|
29 |
+
from seamless_communication.models.generator.loader import load_pretssel_vocoder_model
|
30 |
+
from seamless_communication.models.unity import (
|
31 |
+
UnitTokenizer,
|
32 |
+
load_gcmvn_stats,
|
33 |
+
load_unity_text_tokenizer,
|
34 |
+
load_unity_unit_tokenizer,
|
35 |
+
)
|
36 |
+
from torch.nn import Module
|
37 |
+
from seamless_communication.cli.expressivity.evaluate.pretssel_inference_helper import PretsselGenerator
|
38 |
+
|
39 |
+
from utils import LANGUAGE_CODE_TO_NAME
|
40 |
+
|
41 |
+
DESCRIPTION = """\
|
42 |
+
# Seamless Expressive
|
43 |
+
[SeamlessExpressive](https://github.com/facebookresearch/seamless_communication) is a speech-to-speech translation model that captures certain underexplored aspects of prosody such as speech rate and pauses, while preserving the style of one's voice and high content translation quality.
|
44 |
+
"""
|
45 |
+
|
46 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
|
47 |
+
|
48 |
+
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/workspace/seamless_communication/demo/expressive/models"))
|
49 |
+
if not CHECKPOINTS_PATH.exists():
|
50 |
+
snapshot_download(repo_id="facebook/seamless-expressive", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
51 |
+
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
|
52 |
+
|
53 |
+
# Ensure that we do not have any other environment resolvers and always return
|
54 |
+
# "demo" for demo purposes.
|
55 |
+
asset_store.env_resolvers.clear()
|
56 |
+
asset_store.env_resolvers.append(lambda: "demo")
|
57 |
+
|
58 |
+
# Construct an `InProcAssetMetadataProvider` with environment-specific metadata
|
59 |
+
# that just overrides the regular metadata for "demo" environment. Note the "@demo" suffix.
|
60 |
+
demo_metadata = [
|
61 |
+
{
|
62 |
+
"name": "seamless_expressivity@demo",
|
63 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/m2m_expressive_unity.pt",
|
64 |
+
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"name": "vocoder_pretssel@demo",
|
68 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/pretssel_melhifigan_wm-final.pt",
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"name": "seamlessM4T_v2_large@demo",
|
72 |
+
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
|
73 |
+
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
|
74 |
+
},
|
75 |
+
]
|
76 |
+
|
77 |
+
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
|
78 |
+
|
79 |
+
LANGUAGE_NAME_TO_CODE = {v: k for k, v in LANGUAGE_CODE_TO_NAME.items()}
|
80 |
+
|
81 |
+
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
device = torch.device("cuda:0")
|
84 |
+
dtype = torch.float16
|
85 |
+
else:
|
86 |
+
device = torch.device("cpu")
|
87 |
+
dtype = torch.float32
|
88 |
+
|
89 |
+
|
90 |
+
MODEL_NAME = "seamless_expressivity"
|
91 |
+
VOCODER_NAME = "vocoder_pretssel"
|
92 |
+
|
93 |
+
# used for ASR for toxicity
|
94 |
+
m4t_translator = Translator(
|
95 |
+
model_name_or_card="seamlessM4T_v2_large",
|
96 |
+
vocoder_name_or_card=None,
|
97 |
+
device=device,
|
98 |
+
dtype=dtype,
|
99 |
+
)
|
100 |
+
unit_tokenizer = load_unity_unit_tokenizer(MODEL_NAME)
|
101 |
+
|
102 |
+
_gcmvn_mean, _gcmvn_std = load_gcmvn_stats(VOCODER_NAME)
|
103 |
+
gcmvn_mean = torch.tensor(_gcmvn_mean, device=device, dtype=dtype)
|
104 |
+
gcmvn_std = torch.tensor(_gcmvn_std, device=device, dtype=dtype)
|
105 |
+
|
106 |
+
translator = Translator(
|
107 |
+
MODEL_NAME,
|
108 |
+
vocoder_name_or_card=None,
|
109 |
+
device=device,
|
110 |
+
dtype=dtype,
|
111 |
+
apply_mintox=False,
|
112 |
+
)
|
113 |
+
|
114 |
+
text_generation_opts = SequenceGeneratorOptions(
|
115 |
+
beam_size=5,
|
116 |
+
unk_penalty=torch.inf,
|
117 |
+
soft_max_seq_len=(0, 200),
|
118 |
+
step_processor=NGramRepeatBlockProcessor(
|
119 |
+
ngram_size=10,
|
120 |
+
),
|
121 |
+
)
|
122 |
+
m4t_text_generation_opts = SequenceGeneratorOptions(
|
123 |
+
beam_size=5,
|
124 |
+
unk_penalty=torch.inf,
|
125 |
+
soft_max_seq_len=(1, 200),
|
126 |
+
step_processor=NGramRepeatBlockProcessor(
|
127 |
+
ngram_size=10,
|
128 |
+
),
|
129 |
+
)
|
130 |
+
|
131 |
+
pretssel_generator = PretsselGenerator(
|
132 |
+
VOCODER_NAME,
|
133 |
+
vocab_info=unit_tokenizer.vocab_info,
|
134 |
+
device=device,
|
135 |
+
dtype=dtype,
|
136 |
+
)
|
137 |
+
|
138 |
+
decode_audio = AudioDecoder(dtype=torch.float32, device=device)
|
139 |
+
|
140 |
+
convert_to_fbank = WaveformToFbankConverter(
|
141 |
+
num_mel_bins=80,
|
142 |
+
waveform_scale=2**15,
|
143 |
+
channel_last=True,
|
144 |
+
standardize=False,
|
145 |
+
device=device,
|
146 |
+
dtype=dtype,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
def normalize_fbank(data: WaveformToFbankOutput) -> WaveformToFbankOutput:
|
151 |
+
fbank = data["fbank"]
|
152 |
+
std, mean = torch.std_mean(fbank, dim=0)
|
153 |
+
data["fbank"] = fbank.subtract(mean).divide(std)
|
154 |
+
data["gcmvn_fbank"] = fbank.subtract(gcmvn_mean).divide(gcmvn_std)
|
155 |
+
return data
|
156 |
+
|
157 |
+
|
158 |
+
collate = Collater(pad_value=0, pad_to_multiple=1)
|
159 |
+
|
160 |
+
|
161 |
+
AUDIO_SAMPLE_RATE = 16000
|
162 |
+
MAX_INPUT_AUDIO_LENGTH = 10 # in seconds
|
163 |
+
|
164 |
+
|
165 |
+
from pydub import AudioSegment
|
166 |
+
|
167 |
+
def adjust_audio_duration(input_audio_path, output_audio_path):
|
168 |
+
input_audio = AudioSegment.from_file(input_audio_path)
|
169 |
+
output_audio = AudioSegment.from_file(output_audio_path)
|
170 |
+
|
171 |
+
input_duration = len(input_audio)
|
172 |
+
output_duration = len(output_audio)
|
173 |
+
|
174 |
+
# Calcul de la différence de durée
|
175 |
+
duration_diff = input_duration - output_duration
|
176 |
+
|
177 |
+
# Ajout de silence à la fin si l'audio de sortie est plus court
|
178 |
+
if duration_diff > 0:
|
179 |
+
print("Duration diff : ",duration_diff)
|
180 |
+
silence = AudioSegment.silent(duration=duration_diff)
|
181 |
+
output_audio += silence
|
182 |
+
|
183 |
+
# Enregistrer l'audio ajusté
|
184 |
+
output_audio.export(output_audio_path, format='wav')
|
185 |
+
|
186 |
+
return output_audio_path
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
import yt_dlp
|
192 |
+
def dowloadYoutubeAudio(url):
|
193 |
+
print("Téléchargement de l'audio YouTube en cours...")
|
194 |
+
ydl_opts = {
|
195 |
+
'format': 'm4a/bestaudio/best',
|
196 |
+
'outtmpl': os.getcwd() + "/audio", # Mise à jour du chemin de sortie
|
197 |
+
'postprocessors': [{
|
198 |
+
'key': 'FFmpegExtractAudio',
|
199 |
+
'preferredcodec': 'wav', # Utilisation du format WAV
|
200 |
+
}]
|
201 |
+
}
|
202 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
203 |
+
error_code = ydl.download([url])
|
204 |
+
|
205 |
+
if error_code == 0:
|
206 |
+
print("Sauvegarde du fichier audio...")
|
207 |
+
print("download_finished : ", os.getcwd() + "/audio.wav")
|
208 |
+
else:
|
209 |
+
print("error : Échec du téléchargement...")
|
210 |
+
|
211 |
+
return os.getcwd() + "/audio.wav"
|
212 |
+
|
213 |
+
|
214 |
+
def split_audio(input_audio_path):
|
215 |
+
print("Start Split Audio")
|
216 |
+
audio = AudioSegment.from_file(input_audio_path)
|
217 |
+
silence_thresh = -20 # Seuil de silence
|
218 |
+
min_silence_len = 300 # Durée minimale de silence en ms
|
219 |
+
|
220 |
+
chunks = []
|
221 |
+
current_chunk = AudioSegment.silent(duration=0)
|
222 |
+
for ms in range(0, len(audio), 10): # Incrément de 10 ms
|
223 |
+
segment = audio[ms:ms + 10]
|
224 |
+
current_chunk += segment
|
225 |
+
|
226 |
+
if len(current_chunk) >= 8000: # Si la durée actuelle dépasse 8 secondes
|
227 |
+
# Vérifier s'il y a un silence
|
228 |
+
if silence.detect_silence(current_chunk[-min_silence_len:], min_silence_len=min_silence_len, silence_thresh=silence_thresh):
|
229 |
+
# Couper au silence
|
230 |
+
print("Silence détecté, découpage du segment")
|
231 |
+
chunks.append(current_chunk)
|
232 |
+
current_chunk = AudioSegment.silent(duration=0)
|
233 |
+
|
234 |
+
if len(current_chunk) >= 8900: # Si la durée dépasse 9,89 secondes
|
235 |
+
print("Durée maximale atteinte, découpage du segment")
|
236 |
+
chunks.append(current_chunk)
|
237 |
+
current_chunk = AudioSegment.silent(duration=0)
|
238 |
+
|
239 |
+
# Ajouter le dernier segment s'il n'est pas vide
|
240 |
+
if len(current_chunk) > 0:
|
241 |
+
chunks.append(current_chunk)
|
242 |
+
|
243 |
+
print('Nombre de segments valides:', len(chunks))
|
244 |
+
return chunks
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
def remove_prosody_tokens_from_text(text):
|
250 |
+
# filter out prosody tokens, there is only emphasis '*', and pause '='
|
251 |
+
text = text.replace("*", "").replace("=", "")
|
252 |
+
text = " ".join(text.split())
|
253 |
+
return text
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
import torchaudio
|
261 |
+
|
262 |
+
AUDIO_SAMPLE_RATE = 16000 # Taux d'échantillonnage standard
|
263 |
+
|
264 |
+
def preprocess_audio(input_audio_path: str):
|
265 |
+
print("preprocess_audio start")
|
266 |
+
print("Audio Path :", input_audio_path)
|
267 |
+
audio_segments = split_audio(input_audio_path)
|
268 |
+
temp_folder = os.path.join(os.getcwd(), "path_to_temp_folder")
|
269 |
+
os.makedirs(temp_folder, exist_ok=True)
|
270 |
+
segment_paths = []
|
271 |
+
|
272 |
+
for i, segment in enumerate(audio_segments):
|
273 |
+
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
|
274 |
+
segment_audio = segment.get_array_of_samples()
|
275 |
+
segment_tensor = torch.tensor(segment_audio).unsqueeze(0).float()
|
276 |
+
|
277 |
+
# Rééchantillonnage
|
278 |
+
segment_tensor = torchaudio.functional.resample(segment_tensor, orig_freq=segment.frame_rate, new_freq=AUDIO_SAMPLE_RATE)
|
279 |
+
|
280 |
+
torchaudio.save(segment_path, segment_tensor, sample_rate=AUDIO_SAMPLE_RATE)
|
281 |
+
segment_paths.append(segment_path)
|
282 |
+
print("path for :", segment_path)
|
283 |
+
|
284 |
+
return segment_paths
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
import os
|
289 |
+
import torchaudio
|
290 |
+
|
291 |
+
# Constante pour le taux d'échantillonnage
|
292 |
+
AUDIO_SAMPLE_RATE = 16000
|
293 |
+
|
294 |
+
def preprocess_audio22(input_audio_path: str):
|
295 |
+
print("preprocess_audio start")
|
296 |
+
print("Audio Path :", input_audio_path)
|
297 |
+
|
298 |
+
# Appeler split_audio et obtenir les segments
|
299 |
+
audio_segments = split_audio(input_audio_path)
|
300 |
+
|
301 |
+
# Créer un dossier temporaire pour stocker les segments
|
302 |
+
temp_folder = os.path.join(os.getcwd(), "path_to_temp_folder")
|
303 |
+
os.makedirs(temp_folder, exist_ok=True)
|
304 |
+
|
305 |
+
segment_paths = []
|
306 |
+
for i, segment in enumerate(audio_segments):
|
307 |
+
# Exporter chaque segment dans un fichier temporaire
|
308 |
+
temp_segment_path = os.path.join(temp_folder, f"temp_segment_{i}.wav")
|
309 |
+
segment.export(temp_segment_path, format="wav")
|
310 |
+
|
311 |
+
# Charger et traiter le segment audio
|
312 |
+
arr, org_sr = torchaudio.load(temp_segment_path)
|
313 |
+
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
|
314 |
+
|
315 |
+
# Enregistrer le segment traité
|
316 |
+
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
|
317 |
+
torchaudio.save(segment_path, new_arr, sample_rate=AUDIO_SAMPLE_RATE)
|
318 |
+
|
319 |
+
# Ajouter le chemin du segment traité à la liste
|
320 |
+
segment_paths.append(segment_path)
|
321 |
+
print("Path for :", segment_path)
|
322 |
+
|
323 |
+
return segment_paths
|
324 |
+
|
325 |
+
|
326 |
+
def preprocess_audio222(input_audio_path: str):
|
327 |
+
# Appeler split_audio et obtenir les segments
|
328 |
+
print("preprocess_audio start")
|
329 |
+
print("Audio Path :",input_audio_path)
|
330 |
+
audio_segments = split_audio(input_audio_path)
|
331 |
+
temp_folder = os.getcwd()+"/path_to_temp_folder"
|
332 |
+
os.makedirs(temp_folder, exist_ok=True)
|
333 |
+
segment_paths = []
|
334 |
+
for i, segment in enumerate(audio_segments):
|
335 |
+
segment_path = os.path.join(temp_folder, f"segment_{i}.wav")
|
336 |
+
segment.export(segment_path, format="wav")
|
337 |
+
segment_paths.append(segment_path)
|
338 |
+
print("path for : ",segment_path)
|
339 |
+
|
340 |
+
return segment_paths
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
def process_segment(segment_path, source_language_code, target_language_code):
|
346 |
+
# preprocess_audio(segment_path) - cette ligne peut ne pas être nécessaire si le segment est déjà prétraité
|
347 |
+
|
348 |
+
with pathlib.Path(segment_path).open("rb") as fb:
|
349 |
+
block = MemoryBlock(fb.read())
|
350 |
+
example = decode_audio(block)
|
351 |
+
|
352 |
+
example = convert_to_fbank(example)
|
353 |
+
example = normalize_fbank(example)
|
354 |
+
example = collate(example)
|
355 |
+
|
356 |
+
# Transcription pour mintox
|
357 |
+
source_sentences, _ = m4t_translator.predict(
|
358 |
+
input=example["fbank"],
|
359 |
+
task_str="S2TT",
|
360 |
+
tgt_lang=source_language_code,
|
361 |
+
text_generation_opts=m4t_text_generation_opts,
|
362 |
+
)
|
363 |
+
source_text = str(source_sentences[0])
|
364 |
+
|
365 |
+
prosody_encoder_input = example["gcmvn_fbank"]
|
366 |
+
text_output, unit_output = translator.predict(
|
367 |
+
example["fbank"],
|
368 |
+
"S2ST",
|
369 |
+
tgt_lang=target_language_code,
|
370 |
+
src_lang=source_language_code,
|
371 |
+
text_generation_opts=text_generation_opts,
|
372 |
+
unit_generation_ngram_filtering=False,
|
373 |
+
duration_factor=1.0,
|
374 |
+
prosody_encoder_input=prosody_encoder_input,
|
375 |
+
src_text=source_text,
|
376 |
+
)
|
377 |
+
speech_output = pretssel_generator.predict(
|
378 |
+
unit_output.units,
|
379 |
+
tgt_lang=target_language_code,
|
380 |
+
prosody_encoder_input=prosody_encoder_input,
|
381 |
+
)
|
382 |
+
|
383 |
+
# Chemin pour enregistrer l'audio du segment
|
384 |
+
segment_output_audio_path = os.path.join(os.getcwd(), "result", f"segment_audio_{os.path.basename(segment_path)}")
|
385 |
+
os.makedirs(os.path.dirname(segment_output_audio_path), exist_ok=True)
|
386 |
+
|
387 |
+
# Enregistrer l'audio du segment
|
388 |
+
torchaudio.save(
|
389 |
+
segment_output_audio_path,
|
390 |
+
speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
|
391 |
+
sample_rate=speech_output.sample_rate,
|
392 |
+
)
|
393 |
+
segment_output_audio_path = adjust_audio_duration(segment_path, segment_output_audio_path)
|
394 |
+
|
395 |
+
|
396 |
+
text_out = remove_prosody_tokens_from_text(str(text_output[0]))
|
397 |
+
print("Audio ici : ",segment_output_audio_path)
|
398 |
+
return segment_output_audio_path, text_out
|
399 |
+
|
400 |
+
|
401 |
+
#---------------------------_#
|
402 |
+
|
403 |
+
|
404 |
+
from typing import Tuple
|
405 |
+
|
406 |
+
def run2(
|
407 |
+
input_audio_path: str,
|
408 |
+
source_language: str,
|
409 |
+
target_language: str,
|
410 |
+
) -> Tuple[str, str]:
|
411 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
412 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
413 |
+
|
414 |
+
preprocess_audio(input_audio_path)
|
415 |
+
|
416 |
+
with pathlib.Path(input_audio_path).open("rb") as fb:
|
417 |
+
block = MemoryBlock(fb.read())
|
418 |
+
example = decode_audio(block)
|
419 |
+
|
420 |
+
example = convert_to_fbank(example)
|
421 |
+
example = normalize_fbank(example)
|
422 |
+
example = collate(example)
|
423 |
+
|
424 |
+
# get transcription for mintox
|
425 |
+
source_sentences, _ = m4t_translator.predict(
|
426 |
+
input=example["fbank"],
|
427 |
+
task_str="S2TT", # get source text
|
428 |
+
tgt_lang=source_language_code,
|
429 |
+
text_generation_opts=m4t_text_generation_opts,
|
430 |
+
)
|
431 |
+
source_text = str(source_sentences[0])
|
432 |
+
|
433 |
+
prosody_encoder_input = example["gcmvn_fbank"]
|
434 |
+
text_output, unit_output = translator.predict(
|
435 |
+
example["fbank"],
|
436 |
+
"S2ST",
|
437 |
+
tgt_lang=target_language_code,
|
438 |
+
src_lang=source_language_code,
|
439 |
+
text_generation_opts=text_generation_opts,
|
440 |
+
unit_generation_ngram_filtering=False,
|
441 |
+
duration_factor=1.0,
|
442 |
+
prosody_encoder_input=prosody_encoder_input,
|
443 |
+
src_text=source_text, # for mintox check
|
444 |
+
)
|
445 |
+
speech_output = pretssel_generator.predict(
|
446 |
+
unit_output.units,
|
447 |
+
tgt_lang=target_language_code,
|
448 |
+
prosody_encoder_input=prosody_encoder_input,
|
449 |
+
)
|
450 |
+
|
451 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
452 |
+
torchaudio.save(
|
453 |
+
f.name,
|
454 |
+
speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
|
455 |
+
sample_rate=speech_output.sample_rate,
|
456 |
+
)
|
457 |
+
|
458 |
+
text_out = remove_prosody_tokens_from_text(str(text_output[0]))
|
459 |
+
|
460 |
+
return f.name, text_out
|
461 |
+
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
#---------------------------------------------------------_#
|
472 |
+
#----------------------------------------------------------#
|
473 |
+
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
#----------------------------------------------__#------
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
#-----------------------#
|
494 |
+
|
495 |
+
|
496 |
+
def run(input_audio_path: str, source_language: str, target_language: str) -> tuple[str, str]:
|
497 |
+
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
498 |
+
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
|
499 |
+
|
500 |
+
segment_paths = preprocess_audio22(input_audio_path)
|
501 |
+
print("preprocess_audio end")
|
502 |
+
final_text = ""
|
503 |
+
final_audio = AudioSegment.silent(duration=0)
|
504 |
+
|
505 |
+
|
506 |
+
for segment_path in segment_paths:
|
507 |
+
segment_audio_path, segment_text = process_segment(segment_path, source_language_code, target_language_code)
|
508 |
+
final_text += segment_text + " "
|
509 |
+
segment_audio = AudioSegment.from_file(segment_audio_path)
|
510 |
+
final_audio += segment_audio
|
511 |
+
|
512 |
+
output_audio_path = os.path.join(os.getcwd(), "result", "audio.wav")
|
513 |
+
os.makedirs(os.path.dirname(output_audio_path), exist_ok=True)
|
514 |
+
final_audio.export(output_audio_path, format="wav")
|
515 |
+
|
516 |
+
text_out = remove_prosody_tokens_from_text(final_text.strip())
|
517 |
+
|
518 |
+
return output_audio_path, text_out
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
TARGET_LANGUAGE_NAMES = [
|
525 |
+
"English",
|
526 |
+
"French",
|
527 |
+
"German",
|
528 |
+
"Spanish",
|
529 |
+
]
|
530 |
+
|
531 |
+
|
532 |
+
from flask import Flask, request, jsonify
|
533 |
+
import torch
|
534 |
+
import torchaudio
|
535 |
+
|
536 |
+
app = Flask(__name__)
|
537 |
+
# Fonction run adaptée pour Flask
|
538 |
+
@app.route('/translate', methods=['POST'])
|
539 |
+
def translate():
|
540 |
+
# Récupérer les données de la requête
|
541 |
+
data = request.json
|
542 |
+
input_audio_path = data['input_audio_path']
|
543 |
+
source_language = data['source_language']
|
544 |
+
target_language = data['target_language']
|
545 |
+
|
546 |
+
# Exécution de la fonction de traduction
|
547 |
+
output_audio_path, output_text = run(input_audio_path, source_language, target_language)
|
548 |
+
|
549 |
+
# Retourner la réponse
|
550 |
+
return jsonify({
|
551 |
+
'output_audio_path': output_audio_path,
|
552 |
+
'output_text': output_text
|
553 |
+
})
|
554 |
+
|
555 |
+
|
556 |
+
import os
|
557 |
+
|
558 |
+
url = "https://youtu.be/qb_tHWGJOp8?si=10qB2JApy0q3XY76"
|
559 |
+
input_audio_path = dowloadYoutubeAudio(url)
|
560 |
+
|
561 |
+
#input_audio_path = os.getcwd()+"/au1min_Vocals_finale.wav"
|
562 |
+
source_language = "French"
|
563 |
+
target_language = "English"
|
564 |
+
print("Audio à traiter : ",input_audio_path)
|
565 |
+
output_audio_path, output_text = run(input_audio_path, source_language, target_language)
|
566 |
+
|
567 |
+
print("output_audio_path : ",output_audio_path)
|