vicclab commited on
Commit
f6e586d
·
1 Parent(s): 402615d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilbert_sst2_finetuned
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: sst2
19
+ split: validation
20
+ args: sst2
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.875
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # distilbert_sst2_finetuned
31
+
32
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2831
35
+ - Accuracy: 0.875
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-06
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_steps: 1000
61
+ - num_epochs: 4
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.6883 | 0.24 | 500 | 0.6768 | 0.5115 |
69
+ | 0.5422 | 0.48 | 1000 | 0.4060 | 0.8200 |
70
+ | 0.3479 | 0.71 | 1500 | 0.3533 | 0.8452 |
71
+ | 0.3217 | 0.95 | 2000 | 0.3343 | 0.8567 |
72
+ | 0.2967 | 1.19 | 2500 | 0.3200 | 0.8635 |
73
+ | 0.2857 | 1.43 | 3000 | 0.3110 | 0.8624 |
74
+ | 0.2723 | 1.66 | 3500 | 0.3010 | 0.8670 |
75
+ | 0.2744 | 1.9 | 4000 | 0.2896 | 0.8727 |
76
+ | 0.2594 | 2.14 | 4500 | 0.2897 | 0.8716 |
77
+ | 0.2574 | 2.38 | 5000 | 0.2845 | 0.8761 |
78
+ | 0.2484 | 2.61 | 5500 | 0.2869 | 0.8739 |
79
+ | 0.2464 | 2.85 | 6000 | 0.2842 | 0.8761 |
80
+ | 0.2451 | 3.09 | 6500 | 0.2820 | 0.8773 |
81
+ | 0.2504 | 3.33 | 7000 | 0.2805 | 0.8784 |
82
+ | 0.236 | 3.56 | 7500 | 0.2833 | 0.875 |
83
+ | 0.2366 | 3.8 | 8000 | 0.2831 | 0.875 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.27.4
89
+ - Pytorch 1.13.1+cu116
90
+ - Datasets 2.11.0
91
+ - Tokenizers 0.13.2