verbit-research's picture
add_model_src_code (#1)
5af7e8d verified
raw
history blame
885 Bytes
from torch import nn
from transformers import BertForMaskedLM, PreTrainedModel
from src.config import PunctuationBertConfig
class BertForPunctuation(PreTrainedModel):
config_class = PunctuationBertConfig
def __init__(self, config):
super().__init__(config)
# segment_size equal backward_context + forward_context + predicted token + pause token
segment_size = config.backward_context + config.forward_context + 2
bert_vocab_size = config.vocab_size
self.bert = BertForMaskedLM(config)
self.bn = nn.BatchNorm1d(segment_size * bert_vocab_size)
self.fc = nn.Linear(segment_size * bert_vocab_size, config.output_size)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.bert(x)[0]
x = x.view(x.shape[0], -1)
x = self.fc(self.dropout(self.bn(x)))
return x