|
import os |
|
import sys |
|
import math |
|
import docx |
|
try: |
|
import utils |
|
|
|
from diffusion import create_diffusion |
|
|
|
except: |
|
|
|
sys.path.append(os.path.split(sys.path[0])[0]) |
|
|
|
|
|
|
|
|
|
import utils |
|
|
|
from diffusion import create_diffusion |
|
|
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
import argparse |
|
import torchvision |
|
|
|
from einops import rearrange |
|
from models import get_models |
|
from torchvision.utils import save_image |
|
from diffusers.models import AutoencoderKL |
|
from models.clip import TextEmbedder |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
import numpy as np |
|
from torchvision import transforms |
|
sys.path.append("..") |
|
from datasets import video_transforms |
|
from utils import mask_generation_before |
|
from natsort import natsorted |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
config_path = "configs/sample_i2v.yaml" |
|
args = OmegaConf.load(config_path) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(args) |
|
|
|
def model_i2v_fun(args): |
|
if args.seed: |
|
torch.manual_seed(args.seed) |
|
torch.set_grad_enabled(False) |
|
if args.ckpt is None: |
|
raise ValueError("Please specify a checkpoint path using --ckpt <path>") |
|
latent_h = args.image_size[0] // 8 |
|
latent_w = args.image_size[1] // 8 |
|
args.image_h = args.image_size[0] |
|
args.image_w = args.image_size[1] |
|
args.latent_h = latent_h |
|
args.latent_w = latent_w |
|
print("loading model") |
|
model = get_models(args).to(device) |
|
|
|
if args.use_compile: |
|
model = torch.compile(model) |
|
ckpt_path = args.ckpt |
|
state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)['ema'] |
|
model.load_state_dict(state_dict) |
|
|
|
print('loading success') |
|
|
|
model.eval() |
|
pretrained_model_path = args.pretrained_model_path |
|
diffusion = create_diffusion(str(args.num_sampling_steps)) |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device) |
|
text_encoder = TextEmbedder(pretrained_model_path).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return vae, model, text_encoder, diffusion |
|
|
|
|
|
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): |
|
b,f,c,h,w=video_input.shape |
|
latent_h = args.image_size[0] // 8 |
|
latent_w = args.image_size[1] // 8 |
|
|
|
|
|
if args.use_fp16: |
|
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) |
|
masked_video = masked_video.to(dtype=torch.float16) |
|
mask = mask.to(dtype=torch.float16) |
|
else: |
|
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) |
|
|
|
|
|
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() |
|
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) |
|
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() |
|
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) |
|
|
|
|
|
if args.do_classifier_free_guidance: |
|
masked_video = torch.cat([masked_video] * 2) |
|
mask = torch.cat([mask] * 2) |
|
z = torch.cat([z] * 2) |
|
prompt_all = [prompt] + [args.negative_prompt] |
|
|
|
else: |
|
masked_video = masked_video |
|
mask = mask |
|
z = z |
|
prompt_all = [prompt] |
|
|
|
text_prompt = text_encoder(text_prompts=prompt_all, train=False) |
|
model_kwargs = dict(encoder_hidden_states=text_prompt, |
|
class_labels=None, |
|
cfg_scale=args.cfg_scale, |
|
use_fp16=args.use_fp16,) |
|
|
|
|
|
if args.sample_method == 'ddim': |
|
samples = diffusion.ddim_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ |
|
mask=mask, x_start=masked_video, use_concat=args.use_mask |
|
) |
|
elif args.sample_method == 'ddpm': |
|
samples = diffusion.p_sample_loop( |
|
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ |
|
mask=mask, x_start=masked_video, use_concat=args.use_mask |
|
) |
|
samples, _ = samples.chunk(2, dim=0) |
|
if args.use_fp16: |
|
samples = samples.to(dtype=torch.float16) |
|
|
|
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() |
|
video_clip = vae.decode(video_clip / 0.18215).sample |
|
return video_clip |
|
|
|
def get_input(path,args): |
|
input_path = path |
|
|
|
transform_video = transforms.Compose([ |
|
video_transforms.ToTensorVideo(), |
|
video_transforms.ResizeVideo((args.image_h, args.image_w)), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) |
|
]) |
|
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) |
|
if input_path is not None: |
|
print(f'loading image from {input_path}') |
|
if os.path.isdir(input_path): |
|
file_list = os.listdir(input_path) |
|
video_frames = [] |
|
if args.mask_type.startswith('onelast'): |
|
num = int(args.mask_type.split('onelast')[-1]) |
|
|
|
first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) |
|
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) |
|
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) |
|
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0) |
|
for i in range(num): |
|
video_frames.append(first_frame) |
|
|
|
num_zeros = args.num_frames-2*num |
|
for i in range(num_zeros): |
|
zeros = torch.zeros_like(first_frame) |
|
video_frames.append(zeros) |
|
for i in range(num): |
|
video_frames.append(last_frame) |
|
n = 0 |
|
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) |
|
video_frames = transform_video(video_frames) |
|
else: |
|
for file in file_list: |
|
if file.endswith('jpg') or file.endswith('png'): |
|
image = torch.as_tensor(np.array(Image.open(os.path.join(input_path,file)), dtype=np.uint8, copy=True)).unsqueeze(0) |
|
video_frames.append(image) |
|
else: |
|
continue |
|
n = 0 |
|
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) |
|
video_frames = transform_video(video_frames) |
|
return video_frames, n |
|
elif os.path.isfile(input_path): |
|
_, full_file_name = os.path.split(input_path) |
|
file_name, extention = os.path.splitext(full_file_name) |
|
if extention == '.jpg' or extention == '.png': |
|
|
|
print("reading video from a image") |
|
video_frames = [] |
|
num = int(args.mask_type.split('first')[-1]) |
|
first_frame = torch.as_tensor(np.array(Image.open(input_path), dtype=np.uint8, copy=True)).unsqueeze(0) |
|
for i in range(num): |
|
video_frames.append(first_frame) |
|
num_zeros = args.num_frames-num |
|
for i in range(num_zeros): |
|
zeros = torch.zeros_like(first_frame) |
|
video_frames.append(zeros) |
|
n = 0 |
|
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) |
|
video_frames = transform_video(video_frames) |
|
return video_frames, n |
|
else: |
|
raise TypeError(f'{extention} is not supported !!') |
|
else: |
|
raise ValueError('Please check your path input!!') |
|
else: |
|
raise ValueError('Need to give a video or some images') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup_seed(seed): |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|