File size: 1,497 Bytes
3ed508a
6d715ff
 
3ed508a
6d715ff
 
 
 
 
 
3ed508a
 
6d715ff
 
3ed508a
6d715ff
3ed508a
6d715ff
 
 
 
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
3ed508a
6d715ff
 
 
 
 
 
 
 
3ed508a
6d715ff
3ed508a
6d715ff
 
 
 
 
3ed508a
6d715ff
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: t5-large-bn-adapter-6.34M-snli-model3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large-bn-adapter-6.34M-snli-model3

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6114
- Accuracy: 0.802

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 29
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3085        | 1.0   | 17168 | 0.2388          | 0.9152   |
| 0.2835        | 2.0   | 34336 | 0.2279          | 0.9194   |
| 0.2635        | 3.0   | 51504 | 0.2286          | 0.9223   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0